Усилители Music Angel

    XD500MKIII
    XD800MKIII
    XD845MKIII
    XD845LE
    XD850MKIII
    XD8502AIII
    XD900MKIII
    T24 фонокорректор

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Усилители ARIA

    MINI 6
    MINI 5.1
    MINIP1
    MINIL3
    MINIP14

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Усилители LACONIC

    AZUR H2
    HA-02
    HA-03B
    HA-03B2
    HA-03M
    Lunch Box Pro

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустические системы

    Music Angel One
    Music Angel 2.5
    Music Angel TK-10
    DIVA 5.2

Акустическая система Music Angel One: 20 - 100 Вт, 38 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 - 200 Вт, 20 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 - 250 Вт, 45 Гц - 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 - 150 Вт, 36 Гц - 20 кГц, 90 дБ/Вт/м

Комплектующие

    Лампы
    Кабели

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Это интересно

Основным этапом проектирования является подбор фонда звукопоглощения помещения, который обеспечивал бы требуемые значения времени реверберации при оптимальной структуре ранних звуковых отражений. Подобные расчеты обычно производятся по формуле Эйринга. Исходными данными для их проведения являются объем помещения, общая площадь его внутренних поверхностей и требуемый оптимум реверберации. Расчеты проводят для отдельных октавных полос, используя обычно частотный диапазон от 125 до 4000 Гц. В справочных руководствах приводятся значения КЗП различных звукопоглощающих материалов и конструкций, а также данные о звукопоглощении исполнителей, кресел и других предметов.
    Прежде всего, необходимо отобрать те звукопоглощающие материалы и конструкции, которые будут намечены к использованию в проектируемой студии. Эта задача является наиболее сложной и ответственной, так как при этом приходится учитывать одновременно целый ряд факторов: стоимость материалов, их внешний вид, возможность поставки, требования пожарной безопасности и т.п. На этой же предварительной стадии следует решить вопрос и о способе монтажа материалов на поверхностях студии. Дело в том, что значения КЗП материалов зависят от способа их крепления. Например, наличие воздушного относа между задней поверхностью звукопоглощающей плитки и плоскостью стены (при креплении плитки по несущему каркасу) приводит к увеличению КЗП в низкочастотной области. Игнорирование этого факта при акустическом проектировании может привести к существенному «переглушению» студии на низких частотах, причем исправление этого дефекта в построенной студии обычно весьма сложно и требует больших дополнительных затрат. Помимо этого, следует принимать во внимание и ряд дополнительных чисто акустических требований. В частности, для музыкальных студий оказывается полезным размещать на потолке достаточно большое количество звукорассеивающих конструкций, в дикторских студиях следует избегать поступления первых интенсивных отражений в область размещения дикторского стола. Некоторые эти вопросы ниже рассмотрены подробнее.
    После решения указанных проблем приступают к непосредственным расчетам. Суть их сводится к тому, чтобы путем варьирования площадей занимаемых выбранными материалами подобрать такой общий фонд звукопоглощения студии, при котором в ней будет обеспечен оптимум реверберации. В настоящее время подобные расчеты повсеместно производятся на ЭВМ по специально разработанным программам, позволяющим найти оптимальное решение. При расчете, как показывает опыт, обычно необходимо учитывать некоторые поправочные параметры, к которым относится так называемый коэффициент добавочного звукопоглощения. Этот коэффициент учитывает добавочное поглощение, обусловленное наличием осветительной арматуры, щелей и ряда других факторов. Его значения были определены на основании исследования большого числа студий разного назначения. После завершения расчетов приступают к заключительному этапу, на котором подготавливаются необходимые чертежи для проведения строительных работ.
    Указанные выше основные принципы защиты помещений от проникающих звуковых помех в целом являются общими для всех типов студий и аппаратных. По иному обстоит дело с проектированием акустических облицовок на внутренних поверхностях, требования к которым для различных типов студий существенно отличаются. Ниже кратко будут рассмотрены эти требования дифференцированно по отдельным типам помещений.
    Для указанных выше ТВ студий устанавливаются следующие значения оптимума реверберации: студии С-450-600 — Т = 0,8-1,1 с; С-300 — Т = 0,75-0,85 с; С-150 — Т = 0.6-0,7 с и С-60-80 Т = 0,3-0,4 с. Форма частотной характеристики времени реверберации должна быть строго горизонтальной. При этом в ТВ студиях площадью 150 кв. м и более является допустимым (но не обязательным) спад времени реверберации в области низких частот (в октавной полосе 125Гц) до 20-25% относительно указанных выше средних значений...
    Далее...

 

Информация

 
 

Трехламповый усилитель Губина

 

ОПИСАНИЕ

Выходная мощность усилителя невелика, но учитывая, что в последнее время появились АС с повышенной чувствительностью, он вполне может озвучить небольшое жилое помещение. В конце концов, радиолы, под которые отплясывали в конце 60-х, имели примерно такую же мощность.

Конструкция получила высокую оценку музыкантов, звукорежиссеров и специалистов из зарубежных High-End фирм. Мы надеемся, что эта публикация поможет вам собрать свой первый усилитель, который сможет дать полное представление о красоте лампового звука, почувствовать разницу между транзисторным и ламповым звучанием.

 Схема усилителя является результатом длительных исследований в области прикладной психоакустики и была отшлифована методом проб и ошибок. При оценке экспериментальных образцов первостепенное внимание уделялось субъективным тестам на музыкальность, которые проводились квалифицированными экспертами. Простота схемы хорошо согласуется с основным принципом High-End: предельная краткость звукового тракта, как можно меньше реактивных элементов на пути звука. Поэтому проходные конденсаторы отсутствуют как на входе усилителя, так и между его каскадами. По сути здесь до выходного трансформатора реализована схема УПТ (усилителя постоянного тока - прим. ред.) с малыми фазовыми и интермодуляционными искажениями. Но гальваническая связь между каскадами требует тщательного выбора рабочей точки первого триода, поскольку напряжение на ее аноде задает режим работы выходной лампы. Поэтому напряжения на электродах Л1 не должны отличаться от указанных на схеме более, чем на 2 - 3% Из-за большого разброса характеристик при замене входной лампы усилитель придется настраивать заново. Первый каскад, усилитель напряжения, собран на очень музыкальном двойном триоде 6Н23П-ЕВ, причем в каждом канале работает по одному триоду. Ток анода 5 мА выбран исходя из компромисса между допустимой мощностью, рассеиваемой на аноде (в данном случае 2 Вт) и полосой пропускания каскада, необходимой для хорошей музыкальности усилителя в целом. Как известно, чем меньше анодная нагрузка (и больше ток анода), тем меньше потери высших частот из-за межэлектродных и прочих паразитных емкостей. Как показали эксперименты, первый каскад должен пропускать полосу, на порядок шире слышимого человеческим ухом частотного диапазона, вплоть до 160 кГц. Напряжение на аноде +75В при смещении на сетке 1,5 В обеспечивает работу лампы на наиболее линейном участке рабочей характеристики. Для стабильности режима первого каскада в цепи анодов установлены двухваттные резисторы, и изменение их сопротивления вследствие нагрева незначительно. В усилителе установлены два отдельных регулятора громкости - хотя это и не очень удобно, но при прослушивании отмечалось, что регулятор баланса приводит к изменению тонального баланса. Потенциометры должны быть как можно более надежными: при их обрыве усилитель может выйти из строя. В принципе, можно обойтись и без регулятора громкости, если он есть в предварительном усилителе. В этом случае R1 и R1' заменяются на постоянные сопротивления номиналом 470 кОм. Немного подробнее стоит остановиться на способе снижения фона переменного тока. Как видно из схемы, оба вывода накала заземлены через сопротивления 470 Ом. Таким образом устраняется проникновение на катод тока с частотой 50 Гц, который, в свою очередь, создает на катодном сопротивлении напряжение фона. Такое решение позволяет питать цепи накала переменным током, при этом напряжение фона на выходе усилителя не превышает нескольких десятков микровольт. Выходной каскад выполнен на широко распространенном пентоде средней мощности 6П14П. Как уже говорилось, его режим задается напряжением на управляющей сетке и стабилизируется катодным сопротивлением R10. Такое комбинированное смещение позволило жестко "закрепить" рабочую точку - даже при использовании ламп с большим технологическим разбросом ток анода составлял 54 мА +- 1-2 мА. При фиксированном смещении (подача отрицательного напряжения от отдельного источника на сетку - прим. ред.) рабочую точку пришлось бы подбирать для каждого экземпляра лампы индивидуально. К сожалению, за простоту пришлось заплатить - падение напряжения на катодном резисторе местную создает ООС, которую не удалось полностью нейтрализовать шунтирующими конденсаторами С5 и С5'. Кроме того, для данной схемы большое значение имеет стабильность напряжения питающей сети: оно должно быть 220+-5В. Небольшая общая (3-4 дБ) обратная связь создается подачей выходного напряжения в катод первого каскада через делитель RЗ/R5. В данном случае она необходима для уменьшения выходного сопротивления и снижения уровня нелинейных искажений, который в однотактных усилителях без ООС может достигать 8 - 10%. Без обратной связи могут работать усилители на триодах с малым внутренним сопротивлением, но это сложные схемы, требующие от радиолюбителя более высокой квалификации. В данном случае без ООС возникают интермодуляционные искажения, к которым человеческое ухо гораздо более чувствительно, чем к нелинейным. Особенностью выходного каскада является возможность работы как в пентодном, так и триодном режиме, что позволит вам на практике сравнить две концепции звукоусиления и найти наиболее подходящее звучание. Выбор осуществляется с помощью сдвоенного переключателя П1.

КОНСТРУКЦИЯ

Усилитель смонтирован на шасси из дюралюминия толщиной 1.5-2 мм. Сверху на шасси установлены лампы, входные и выходные клеммы, электролитические конденсаторы, а также входной и силовой трансформаторы. Все остальные детали - в подвале шасси. На передней панели размещены регуляторы громкости, выключатели питания и переключатель режимов "пентод - триод".

В качестве опорных точек для монтажа используются ламповые панельки и монтажные планки. Необходимо помнить, что все соединительные проводники должны быть минимальной длины, а провода, идущие от регуляторов громкости к сеткам Л 1, следует свить с шагом не менее 1 витка на сантиметр. Для снижения уровня помех все элементы необходимо соединять в точках, показанных на принципиальной схеме. Корпуса (отрицательные выводы) конденсаторов фильтра должны быть изолированы от шасси, а точка их соединения с земляной шиной находится экспериментально по минимуму фона. Так же определяется и место подключения земляной шины к шасси (как правило, около входных гнезд - прим. ред.).

ДЕТАЛИ

Усилитель можно собрать из широко распространенных и даже уцененных деталей, и при этом получить хорошие результаты. Но если вы хотите создать действительно качественный аппарат, детали придется подбирать. Прежде всего это касается регуляторов громкости - от их качества зависит надежность всего усилителя. Желательно применять потенциометры фирм ALPS или NOBLE. Не стоит экономить также на входных и выходных гнездах - нужно учитывать, что деградация сигнала происходит именно в точках механического контакта. Многое зависит и от качества монтажного провода и марки припоя. Желательно использовать проводники из бескислородной меди и пользоваться припоем с повышенным содержанием серебра. Эксперименты показали, что лучше всего звучат полипропиленовые и полимерные конденсаторы, а также сопротивления с углеродистым и металлопленочным проводящим слоем.

Сердцем усилителя является выходной трансформатор, который наматывается на сердечнике ШЛ 22 х 32 с зазором 0.2 мм. Первичная обмотка содержит 3000 витков провода ПЭВ-1 0.2, вторичная - 90 витков провода ПЭВ-1 0.47. Намотку нужно производить послойно в следующем порядке: 90 - 1500 - 90 - 1500 - 90. Секции первичной обмотки соединяются последовательно, вторичной - параллельно. После намотки трансфоматор следует проверить, включив первичную обмотку в сеть 220 В. Если все сделано правильно, то напряжения на выводах вторичной обмотки должны быть одинаковы (около 6.6 В).

Сетевой трансформатор - стандартный, габаритной мощностью 90 - 120 ВА с повышающей обмоткой 310 В при токе 0.2 - 0.25 А и накальной 6.3 В при 2 А.

НАЛАЖИВАНИЕ

Перед налаживанием необходимо еще раз проверить правильность монтажа, после чего усилитель можно включить в сеть. К выходу необходимо подключить эквивалент нагрузки или громкоговоритель. Если усилитель возбуждается, концы вторичной обмотки трансформатора следует поменять местами. При исправных деталях и безошибочном монтаже режимы ламп устанавливаются автоматически. Если напряжения на электродах ламп отличаются от указанных на схеме более чем на 10%, их придется подобрать более тщательно. Напряжения на анодах Л1 зависят от величины сопротивлений R2 и R2', а напряжение на катодах Л2 и ЛЗ - от R10 и R10' соответственно.

ОТ РЕДАКЦИИ

Собранная за полтора часа схема усилителя заработала сразу, без всякого налаживания. Качество звучания было весьма высоким даже при использовании выходного трансформатора от лампового телевизора. Кстати, звучание можно существенно улучшить, заменив в источнике питания полупроводниковые диоды кенотроном 5Ц4С или аналогичным, на допустимый выпрямленный ток не менее 120 мА (см рис.3). При этом, правда, усложнится конструкция сетевого трансформатора. Повышающая обмотка должна состоять из двух секций по 350 В, и придется добавить еще одну накальную для кенотрона. Такая переделка позволит обойтись без отдельного выключателя анода: при включении усилителя напряжение в схеме будет появляться постепенно, по мере прогревания катодов кенотрона.

Схема трехлампового усилителя Губина

УСИЛИТЕЛЬ (рис. 1):

R1,R1 от 47 кОм до 100 кОм переменные, кривая В

R2,R2' 47 *кOм 2Вт

RЗ,RЗ' 360 Ом

R4,R4' 470 Ом

R5,R5' 6,2* кОм

R6 10*кОм 2Вт

R7 10 Ом 2Вт

R8,R8' 1 кОм

R9,R9' 100 Oм

R10,R10' 1,5*кОм 5Вт

R11 220 Ом 2 Вт

С1,С4 0,47мкФх630В

С2 47 мкФ х 450 В

СЗ 220 мкФ х 450 В

С5,С5' 220 мкФх160В

Л1 6Н23ПЕВ (ЕСС85)

Л2,Л2' 6П14П (ЕL84)

П1,П1' МТЗ, ПТ8-7

Тр1,Тр1' трансформатор выходной 4 кОм/4 Ом

Номиналы,отмеченные * подбираются при налаживании

 

Схема блока питания трехлампового усилителя Губина

ИСТОЧНИК ПИТАНИЯ (рис. 2):

R1 220 Om 5 Вт

C1,C2 220 мкФ х 450 В

Д1-Д4 КД226А 4 шт.

Тр1 трансформатор силовой 220 В/310,6.3 В

Пр1 предохранитель 0,315 А

П1,П2 ТП1

 

Схема блока питания на кенотроне

ТЕХНИЧЕСКИЕ ДАННЫЕ

Диапазон усиливаемых частот (-3 дБ): 20 Гц - 80 кГц.

Чувствительность: 1,2 В.

Выходная мощность одного канала,

в тетродном режиме(переключатель П1 в положении 1): 4.5 Вт,

в триодном режиме(переключатель П1 в положении 2): 2.75 Вт.

Коэффициент нелинейных искажений (1 Вт): 0,25%.

Отношение сигнал/шум: 96 дБ.

 

Опубликовано по материалам STEREO&VIDEO ИЮЛЬ/АВГУСТ/СЕНТЯБРЬ 1996

 

 

 

Статьи

Ламповый звук
Тайны лампового звука
Волшебство лампового звука [1] [2]
Когда лампа лучше, чем транзистор [1] [2]
Почему вакуумный триод звучит музыкально
Схемотехника ламповых усилителей
Лампы или транзисторы? Лампы!
Однотактный ламповый усилитель для начинающих
Двухтактные ламповые усилители
Оконечный пушпульный усилитель - схема Уильямсона-Хафлера-Кероеса
Рекомендации по повторению реплики схемы Уильямсона-Хафлера-Кероеса
Однотактный усилитель с непосредственной связью. Схема Loftin-White [1] [2]
Трехламповый усилитель Губина
Однотактник на 300В
Усилители низкой частоты
Расчет каскада с нагрузкой в аноде
Однотактный усилитель на лампе 807 [1] [2]
Циклотрон. Мощный усилитель с выходными лампами ГУ-50
SE на RB300
Однотактный усилитель мощности на 300В. Модель WE91 для 90-х годов [1] [2]
Как улучшить звучание HI-FI системы [1] [2] [3] [4] [5] [6]
Лампы и звук: назад, в будущее [1] [2] [3] [4] [5]
Однотактный ламповый ... [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Апгрейд усилителя XD845MKIII [1] [2]
"Усилитель" для наушников на SRPP [1] [2] [3] [4] [5] [6]
Ламповый High-End [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [...]
Обзор журнала Glass Audio за 1998 год [1] [2]
Обзор журнала Glass Audio за 1999 год
Корректор для винила
Компенсированные регуляторы громкости
Усилитель НЧ
Даешь ONGAKU!
Tubesaurus Rex
Усилитель НЧ с комбинированной обратной связью
Прибор для измерения напряжения накала высоковольтных кенотронов
George Ohm живет в Харькове
Ревизия однотактного усилителя с межкаскадным трансформатором
Усилитель мощности НЧ с высоким КПД
Двухканальный усилитель НЧ
Усилитель НЧ с клавишным переключателем
Радиотрансляционные установки ТУ-50 и ТУ-100
Портативный проигрыватель
Усилитель НЧ
Усилитель без выходного трансформатора
Усилители без выходного трансформатора
Лампово-полупроводниковый УМЗЧ
Акустика
Бытовые акустические системы [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Там, где живут басы [1] [2] [3] [4] [5] [6]
The Onken Enclosure
Категории слухового восприятия [1] [2]
Три взгляда на акустику помещений [1] [2]
Акустика в которой мы живем [1] [2]
Акустика офисов
Мифы звукоизоляции
Акустика отделочных материалов
Акустический агрегат с объемным звучанием
Акустические свойства домашней мебели
Акустические линзы для громкоговорителей
Акустические измерения в практике радиолюбителя
Акустический фазоинвертор
Акустика студий [1] [2]
Полезные советы разработчиков Hi-End
Триод против пентода. Что выбрать? [1] [2]
SINGLE-ENDED VS PUSH-PULL [1] [2] [3] [4] [5] [6] [7]
Одноламповые усилители низкой частоты
Как пользоваться характеристиками электронных ламп
Многоламповые усилители НЧ на импортных лампах
Контактно-резисторный коммутатор входов
Как проверять аппаратуру в салоне
Что лучше: 4 или 8 Ом акустика?
Выходной трансформатор для однотактника. Быть или не быть линейным
Простая и быстрая проверка трансформаторов
Десять способов усовершенствовать вашу аудиокомнату
Испытатель ламп
Понижение уровня фона в усилителях
Evolution
Пять правил рационального питания
Трансформаторы в однотактных усилителях
Выходные трансформаторы
Измерение характеристик выходного трансформатора [1] [2]
Однотактный «Magnum»
Какая лампа нам нужна
Какая лампа нам нужна и будет ли она?
Улучшенная конфигурация листов трансформаторной стали
Должен ли УМЗЧ иметь малое выходное сопротивление? [1] [2]
Звук: интересные наблюдения
Вся правда об акустике ProAc
Немного теории лампового звука
О заметности искажений
История лампы 300B
Краткая история возникновения Hi-Fi
Возможен ли "виниловый ренессанс?" [1] [2] [3]
Hi-End: Мифы и реальность [1] [2]
Как не заблудиться в кабельных джунглях?
Побалуйте свои уши! [1] [2]
Ограничение сигнала усилителем – можно ли работать в клиппинге?
"Хай-Энд" умер, да здравствует "Хай-Энд"! [1] [2]
Блестящие звукозаписи [1] [2] [3]
Семь слов об ошибках аудиоэкспертизы
Частотные, нелинейные и фазовые искажения
Внешние факторы, влияющие на восприятие звука
Многоканальный окружающий звук [1] [2] [3] [4]
Магнитная запись: мифы и реальность
Теория схемотехники и звукотехники
Для начинающих. Как работает усилитель [1] [2]
Принципы схемотехники электронных ламп [1] [2] [3] [4] [5] [6] [7] [8]
Хрестоматия радиолюбителя, 1963г. [1] [2] [3] [4] [5]
Конструктивный расчет входных и выходных трансформаторов [1] [2]
Как работают звуковые трансформаторы
Элементарная теория схем с обратной связью [1] [2] [3]
Теория звукотехники
Двухтактно-параллельный усилитель НЧ
Особенности стандартов, описывающих мощность в звукотехнике
Отрицательная обратная связь в усилителях
Классы усилителей мощности
Элементарная теория триода [1] [2] [3] [4] [5] [6] [7] [8] [9]
Как работает лучевой тетрод
О мощности, ваттах, децибелах... [1] [2]
Теория звука [1] [2] [3] [4]
Звук и цифровые технологии [1] [2] [3] [4] [5] [6]
Проектирование абсолютно устойчивых усилителей [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Звуковые форматы
Описание стандарта MP3
Правильная мощность
Начинающим. Радиолампа
Высококачественный усилитель низкой частоты
Объемный звук [1] [2] [3]
Парадоксы электрона
Вибратор к гитаре
Ламповый авометр
Старая и популярная 12АХ7/ЕСС83
Принцип устройства и работы электро-вакуумных приборов
Двухэлектродные лампы
Трехэлектродные лампы
Рабочий режим триода
Многоэлектродные и специальные лампы
Электронно-лучевые трубки
Газоразрядные и индикаторные приборы
Фотоэлектронные приборы
Собственные шумы электронных ламп
Особенности работы электронных ламп на СВЧ
Специальные электронные приборы для СВЧ
Надежность и испытание электровакуумных приборов
Основы схемотехники ламповых усилителей
Искажения в усилителях, их измерение, меры по снижению искажений
Основные сведения о радиокомпонентах
Источники питания
Каскады усиления мощности
Каскады предварительного усиления
Широкополосные усилители
Усилительный каскад с катодной нагрузкой [1] [2]
Life in Vacuum. EL34
Life in Vacuum. 6H8C, 6H9C
Life in Vacuum. SV572 SV6550 6C5C 6C3П/6C4П
Двойной триод 6Н3П
Пентод 6Ж5П
6П42С / 6П45С
Лучевой тетрод 6П1П
Пентод 6П14П в оконечном каскаде
Двойной триод 6Н14П
Кенотрон 1Ц11П
Демпферный диод 6Ц10П
Что и как мы слышим
 
 
 

Найти на сайте

 

Информация

Только к середине 80-х возникла новая волна спора между двухтактными усилителями на триодах и пентодных в ультралинейном включении. Противостояние касалось исключительно только РР схем; так что не будем обсуждать этот момент и скажем лишь одно - триоды вернулись, а наряду с ними вся орава усилителей с переключением триод/UL пентод.
    Вторая волна поднялась в начале 90-х, уже с знакомым нам конфликтом - двухтактные триоды против однотактных. Поскольку он так и не разрешен, им мы и займемся. Темы дебатов опять крутятся вокруг фазоинверторов, продуктов искажений, глубины ОС и вдруг всплывшего эффекта под названием "первый ватт".
    Далее...

 

Это интересно

Своему появлению на свет схема обязана моему любопытству: интересно было послушать, а как же она будет звучать. В разных источниках приводятся значительно разнящиеся мнения на сей счет, а самому слышать такой усилитель мне не приходилось, схема применяется довольно редко.
    В качестве выходной лампы я решил использовать ГУ-50, и вот почему именно ее: В основном, меня привлекала значительная мощность рассеяния на аноде, мне не хотелось использовать параллельное включение ламп. Кроме того, лампа достаточно распространена, имеет высокую надежность и в обычных двухтактных схемах работает вполне удовлетворительно. У лампы есть не то чтобы недостаток, а особенность - она хорошо работает при высоких анодных напряжениях и довольно большом приведенном сопротивлении нагрузки. В итоге, выходной трансформатор получается сложным и громоздким, схема циклотрона позволяет эту проблему обойти.
    Если обратиться к теории, то выходной каскад циклотрона представляет собой мостовую схему (рис.1), одна диагональ которой образована катодными повторителями, а другая - плавающими источниками питания. Учитывая низкое выходное сопротивление катодного повторителя и то, что относительно нагрузки лампы по переменному току включены параллельно, выходное сопротивление такой схемы стремится к тео­ретическому минимуму (для данного типа ламп). Соответственно, это позволяет существенно упростить выходной трансформатор и вообще заменить его автотрансформатором. К достоинствам схемы можно отнести и ее полную симметричность и, соответственно, малую чувствительность к шумам и помехам по цепям питания. Конечно, определенное неудобство вызывает необходимость иметь два независимых источника анодного напряжения (для двух каналов - четыре), но мне думается, что это умеренная плата за упрощение конструкции выходного трансформатора. Существует и еще один достаточно тонкий вопрос, связанный с использованием такой схемы. Достаточно много специалистов считают, что использование катодного повторителя, как каскада, охваченного стопроцентной ООС, отрицательно влияет на качество звука. Относительно малосигнальных трактов я для себя этот вопрос уже давно выяснил - увидеть или услышать отрицательное влияние катодного повторителя мне так и не удалось. А вот поведение мощного повторителя при работе на комплексную нагрузку вызывает некоторые сомнения. Честно говоря, мне так пока и не удалось получить однозначного ответа на этот вопрос. Как минимум, требуется подробно исследовать схему и с другими типами ламп, так что вопрос остается открытым.
    Усилитель имеет три каскада, не охвачен общей цепью ООС и полностью симметричен (на схеме показан вариант с несимметричным входом). Первый каскад (VL1) служит для предварительного усиления напряжения и при несимметричном входе попутно выполняет функцию фазоинвертора. Режим работы каскада задается источником тока на транзисторе VT1. Усиленное напряжение с его выхода поступает на вход драйверного каскада, выполненного на лампе VL2. Его режим также задается источником тока (VT2). В принципе, использование источника тока в этом каскаде не обязательно, но позволяет повысить стабильность работы каскада при колебаниях напряжения питания и замене лампы.
    С драйверного каскада сигнал поступает на сетки ламп выходных катодных повторителей. Выходные лампы работают с фиксированным смещением. Каждая выходная лампа имеет свой стабилизированный источник смещения, и режимы ламп задаются независимо подстроенными резисторами R22, R25. Использовать автоматическое смещение нежелательно. Вообще, вопрос организации цепей смещения в мощных выходных каскадах - тема отдельной статьи. В нашем случае (да и не толь­ко в нашем) применение автоматического смещения приводит к нежелательному сдвигу рабочих точек ламп при большом сигнале. Напряжение на экранирующих сетках ламп стабилизировано цепочками стабилитронов - VD5 - VD8. Стабилизация напряжения на экранирующих сетках и напря­жения смещения позволило обойтись без стабилизации анодных напряжений...
    Далее...

 

Информация

 

Усилитель ламповый XD850MKIII

XD850MKIII

Акустическая система Music Angel One

Music Angel One

Усилитель ламповый XD800MKIII

XD800MKIIIIII

Усилитель ламповый MINIP1

MINIP1