Усилители Music Angel

    XD500MKIII
    XD800MKIII
    XD845MKIII
    XD845LE
    XD850MKIII
    XD8502AIII
    XD900MKIII
    T24 фонокорректор

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Усилители ARIA

    MINI 6
    MINI 5.1
    MINIP1
    MINIL3
    MINIP14

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Усилители LACONIC

    AZUR H2
    HA-02
    HA-03B
    HA-03B2
    HA-03M
    Lunch Box Pro

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустические системы

    Music Angel One
    Music Angel 2.5
    Music Angel TK-10
    DIVA 5.2

Акустическая система Music Angel One: 20 - 100 Вт, 38 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 - 200 Вт, 20 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 - 250 Вт, 45 Гц - 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 - 150 Вт, 36 Гц - 20 кГц, 90 дБ/Вт/м

Комплектующие

    Лампы
    Кабели

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Это интересно

Рассмотрим процессы, происходящие в помещении при звучании источника И (рис. 2). Первым в точку приема Пр, где находятся уши слушателя или микрофон, приходит по пути 1 прямой звук, затем по пути 2 звуки, отраженные от ближайших к источнику поверхностей, далее звуки по пути 3, отраженные от удаленных поверхностей. Позже приходят звуки, претерпевшие двукратные отражения на пути 4, и т. д. Количество отражений в единицу времени возрастает пропорционально второй степени времени. Помещение постепенно заполняется звуковой энергией. После прекращения звучания источника начинается процесс отзвука. В той же последователь- ности, как и при начале звучания, сперва в точку приема приходят сравнительно редкие начальные отражения. Далее плотность запаздывающих импульсов увеличивается, а их энергия постепенно спадает (рис. 3).
    Статистическая теория занимается именно этой, второй частью отзвука с повышающейся плотностью импульсов во времени и уменьшающейся их энергией. Прямой звук и начальные сравнительно редкие отражения статистической теорией не принимаются во внимание.
    Метод, предложенный У. Сэбином, основан на модели идеального помещения, в котором звуковое поле после прекращения действия звукового сигнала может быть рассчитано на основе статистического рассмотрения процесса затухания звука. При этом предполагается, что амплитуды и фазы отраженных звуковых волн распределены хаотически, т. е. в волновом движении нет преобладающих направлений потоков и симметрии в распределении амплитуд. Принятое допущение позволяет считать, что средние значения звуковой энергии по различным направлениям одинаковы, т. е. звуковое поле изотропно, и средняя по времени плотность звуковой энергии в любой точке помещения тоже одинакова. Такое звуковое поле называют диффузным. Его рассмотрение дало возможность пренебречь явлениями интерференции и применить при расчетах энергетическое суммирование. Этот подход подобен используемому в кинетической теории газов и основан на математи ческой теории вероятностей. Л. Бреховских показал, что для помещений, линейные размеры которых велики по сравнению с длиной волны, получаются достаточно удовлетворит. результаты.
    Методами математической статистики в диффузном поле определяют среднюю длину пробега звукового луча между двумя отражениями. Для помещения в форме прямоугольного параллелепипеда с линейными размерами, близкими к "золотому сечению" (длина относится к ширине и к высоте, как 2 : 20,5 : 1, по другому определению 5 : 3 : 2), статистически определенная средняя длина свободного пробега звукового луча
    lср = 4V / S ,
    где V - объем помещения, S - общая площадь всех ограничивающих поверхностей (пола, потолка, стен).
    Впоследствии было установлено, что полученная зависимость примерно сохраняется и для помещений, линейные размеры которых отклоняются от "золотого сечения", и для помещений более сложной формы.
    При каждом отражении часть падающей энергии поглощается преградами и превращается в тепло. Процесс постепенного уменьшения плотности звуковой энергии У. Сэбин назвал реверберацией (reverberation в переводе означает "отражение", "отзвук"). В Германии для обозначения этого процесса используется слово Nachhall, в переводе на русский "отзвук", "отголосок", "отклик". Термин "отзвук" ранее встречался и в русской технической литературе.
    За длительность процесса, реверберации - время реверберации - было принято считать промежуток, за который плотность звуковой энергии уменьшается в 106 раз, звуковое давление в 103, а уровень звукового давления на 60 дБ.
    Прямых объяснений мотивов выбора спада уровня на 60 дБ нет. Попытаемся найти разумные причины. Фортиссимо оркестра соответствуют уровни звукового давления 90-100 дБ, а пианиссимо - 35-40 дБ. Тогда средние уровни составят 63-70 дБ и принятое по определению (спад на 60 дБ) время реверберации будет примерно соответствовать длительности спада средних уровней до порога слышимости. Возможно, данное обстоятельство и стало причиной выбора такого определения времени реверберации...
    Далее...

 

Информация

 
 

Когда лампа лучше, чем транзистор

 

ЧАСТЬ 1

Многие годы производители транзисторных усилителей водили аудиофилов за нос, предлагая им правдоподобные объяснения, почему следует старую модель усилителя заменить на новую. Коротко напоминаю эти объяснения:
- слишком велики гармонические искажения (в новых моделях усилителей искажения снижены до 0,0001%);
- мал коэффициент демпфирования (коэффициент демпфирования достиг 1000);
- недостаточно широка полоса воспроизводимых частот (полоса была расширена до 5 МГц);
- усилители ограничивают скорость изменения сигнала (на лицевых панелях новых усилителей появилась надпись High Speed Amplifier");
- громкоговоритель требует большего тока (и вот множество включенных параллельно выходных транзисторов обеспечивают выходной ток усилителя 100 А).
Этот список можно было бы продолжить.
Пока удавалось поддерживать у адиофилов веру во все эти технические "заморочки", на рынке усилителей царило оживление...
Имеет ли лампа преимущество перед транзистором? И если имеет, то при каких условиях они проявляются? Ответы Вы найдете в этой статье.

Чтобы сразу не впасть в мистику, рассмотрим на физическом уровне различия между лампой, полевым и биполярным транзисторами.

Лампу (возьмем в качестве примера триод) можно рассматривать как "проводник", который состоит из тщательно очищенных от кислорода электродов - анода и катода, - а также вакуумного промежутка между ними, заполненного носителями заряда - энергетически возбужденными свободными электронами. Переносимый через вакуум свободными электронами ток анода управляется напряжением между сеткой и катодом.
Усилительные свойства триода можно характеризовать крутизной характеристики, то есть отношением приращения тока анода к приращению напряжения "сетка - катод" (при неизменном напряжении на аноде). Независимость крутизны от электрических режимов лампы является показателем ее линейности. Особенно важно, что крутизна характеристики триода мало зависит от тока анода (в большинстве случаев она пропорциональна примерно корню 3-й степени из величины этого тока). Влиянием входной характеристики лампы ва линейность можно пренебречь, так как в режиме отрицательного смещения сетки ток в ее цепи отсутствует.

Межэлектродные емкости постоянны и не зависят от электрических ре-жимов лампы. Немаловажно также то, что основные параметры лампы не зависят от температуры анода или, иначе, от выделяемой на нем мощности. И еще одно важное преимущество именно триода - низкое внутреннее сопротивление, которое при оптимальном режиме использования лампы меньше сопротивления нагрузки приблизительно в два раза.

Зависимость внутреннего сопротивления от тока анода обратна зависимости крутизны триода от этого тока, поэтому в режиме, а котором сопротивление нагрузки больше внутреннего сопротивлений, усиление лампы практически не зависит от тока анода.

Полевой транзистор тоже можно рассматривать как "проводник". Проводящей частью транзистора является канал в кристалле сверхчистого кремния, тип проводимости которого (p или n) задается ничтожной примесью индия или мышьяка. В зависимости от типа проводимости транзистора а канале перемещаются носители заряда: свободные электроны или "дырки" (не заполненные электронами места в кристаллической решетке). Как и в ламповом триоде, ток на выходе полевого транзистора (ток стока) управляется напряжением между затвором и истоком.

Усилительные свойства полевого транзистора (как и лампы) можно характеризовать крутизной (то есть отношением приращения тока стока к приращению напряжения "затвор - исток").

Полевой транзистор имеет более выраженную нелинейность, чем лампа. Почти у всех типов полевых транзисторов крутизна увеличивается пропорционально квадратному корню из величины тока стока.

Как и у лампы, ток управляющей цепи (цепи затвора) отсутствует, поэтому нелинейностью входной характеристики полевого транзистора можно пренебречь. Несколько хуже с межэлектродными емкостями. Наиболее важная емкость "сток - затвор" зависит от действующего между этими электродами напряжения.

Самым неутешительным фактом следует признать высокую чувствительность тока стока и крутизны полевого транзистора к изменениям температуры его кристалла. Эта чувствительность объясняется ростом подвижности носителей заряда при увеличении температуры и обычно характеризуется температурным коэффициентом напряжения "затвор - исток" (то есть приращением напряжения на затворе. которое необходимо для поддержания на постоянном уровне стока транзистора при повышении температуры его кристалла на один градус). В зависимости от режима, в котором используется полевой транзистор, температурный коэффициент может принимать значение от 2 до -3 мВ/град (Полевой транзистор может быть поставлен в такой режим, при котором температурный коэффициент будет равен нулю).

Хуже всего то, что температура кристалла транзистора, хотя и с инерцией (определяемой тепловой постоянной времени этого транзистора), но успевает почти за всеми изменениями рассеиваемой в транзисторе мгновенной мощности, однако об отрицательном значении этого мы поговорим несколько позднее.

Кроме транзисторов со статической индукцией, остальные типы полевых транзисторов имеют внутреннее сопротивление значительно большее, чем сопротивление нагрузки.
Биполярный транзистор -также своего рода "проводник". Однако физические процессы, связанные с прохождением в нем тока, коренным образом отличаются от тех, которые протекают в лампах и полевых транзисторах.

Первое отличие состоит в том, что носителям заряда, а ими являются электроны или дырки, приходится преодолевать два барьера (p-n-перехода): эмиттер - база и база - коллектор, то есть дважды переходить от кристаллической решетки одного типа к решетке другого типа.

Второе отличие - в принципе управления током коллектора. Величина этого тока зависит от количества "впрыснутых" из эмиттера в базу так называемых неосновных для нее носителей, которые "блуждают" в ней, дока не будут втянуты сильным электрическим полем коллектора, смещенного в обратном направлении по отношению к безе. Управление впрыскиванием в базу не основных носителей осуществляется путем смещения в прямом направлении (иначе говоря, приоткрывания) база-эмиттерного перехода транзистора. Усилительные свойства биполярного транзистора также можно характеризовать крутизной (то есть отношением приращении тока коллектора к приращению напряжения базе - эмиттер). В соответствии с теорией крутизна биполярного транзистора приблизительно пропорциональна току коллектора, поэтому он имеет более выраженную нелинейность, чем полевой транзистор.

В отличие от лампы и полевого транзистора, к нелинейности крутизны биполярного транзистора следует добавить нелинейность его входной характеристики. И это понятно, так как даже по виду она мало чем отличается от вольтамперной характеристики прямо смещенного диода.

С межэлектродными емкостями здесь творится то же самое, что и в полевом транзисторе. Наиболее важная емкость перехода коллектор -- база биполярного транзистора зависит от действующего между этими электродами напряжения.

В биполярном транзисторе мы также сталкиваемся с высокой чувствительностью его параметров к изменениям температуры кристалла. А именно, температурный коэффициент напряжения база - эмиттер равен -2,2 мВ/ град, а коэффициент усиления по току транзистора увеличивается на 2-3 % / град. Так же как и в полевом транзисторе, температура кристалла биполярного транзистора с инерцией (определяемой тепловой постоянной времени) успевает за изменениями рассеиваемой в транзисторе мгновенной мощности.

Внутреннее сопротивление биполярных транзисторов тоже не оставляет никакой надежды - оно всегда больше сопротивления нагрузки. Сгруппируем теперь наиболее важные и вполне объективные отличия лампы, полевого и биполярного транзистора в таблице 1.

 

Таблица 1

Усилительный элемент ►
Вид отличий ▼

Лампа (триод)

Полевой транзистор

Биполярный транзистор

Тип проводимости

Электронная (через вакуум)

Электронная или дырочная (через канал в кристалле кремния)

Электронная или дырочная (через два барьера: эмиттер-база и база-коллектор)

Нелинейность входная

Отсутствует

На ВЧ обусловлена зависимостью емкости сток-затвор от напряжения. На НЧ отсутствует.

На ВЧ обусловлена зависимостью емкости коллектор-база от напряжения. На НЧ обусловлена нелинейностью ВАХ база-эмиттер. Пропорциональна величине тока коллектора

Нелинейность выходная

Пропорциональна корню третьей степени из величины тока анода

Пропорциональна квадратному корню из величины тока стока

Пропорциональна величине тока коллектора

Термочувствительные параметры

Отсутствуют

Ток стока и крутизна зависят от мгновенной температуры кристалла

Ток коллектора и коэффициент усиления по току зависят от мгновенной температуры кристалла

Выходное сопротивление

В два раза меньше сопротивления нагрузки

Больше сопротивления нагрузки (кроме транзисторов типа СИТ)

Больше сопротивления нагрузки

 

Главных отличий три. Биполярный транзистор отличается от лампы термочувствительностью основных параметров, большей нелинейностью входных и выходных характеристик (полевой транзистор занимает в этом ряду промежуточное положение); а кроме этого, лампа (триод) превосходит транзистор в части удобства согласования своего внутреннего сопротивления с громкоговорителем.

С моей точки зрения, всего этого вполне достаточно, чтобы предпочесть ламповый усилитель усилителю на полевых транзисторах, а последний - усилителю на биполярных транзисторах.

Объективист: Ваша точка зрения звучит не очень убедительно, ведь против отмеченных вами недостатков транзисторов есть радикальное средство - отрицательная обратная связь (ООС), Лучше поищите причины плохого звучания транзисторных усилителей в их схемах.

Автор: Согласен. Сравним традиционный и хорошо зарекомендовавший себя усилитель на лампах (см. схему на рис. 1) я достаточно простой для рассмотрения усилитель ва биполярных транзисторах (см. схему на рис. 2).Схема

Главное, что отличает ламповый усилитель, - это выходной трансформатор, который служит для преобразования низкого сопротивления громкоговорителя в оптимальное сопротивление нагрузки выходных ламп. В транзисторном усилителе оптимальное согласование возможно без применения трансформатора. Без трансформатора в ламповом усилителе трудно обойтись хотя бы потому, что с его помощью обеспечивается симметричная работа выходного каскада в режиме "тяни-толкай" (push-pull). В транзисторном усилителе этот режим может быть достигнут включением последовательно транзисторов разного типа проводимости. Лампу с противоположным типом проводимости, к сожалению, пока не изобрели.

О.: Видите! Транзисторный усилитель не сложнее лампового, а главное - в нем нет выходного трансформатора, поэтому если транзисторы сами по себе не вызывают слабо поддающуюся объективному анализу "порчу" звука, то транзисторный усилитель должен звучать лучше лампового.

СхемаА.: Не спешите с выводами, а внимательно всмотритесь в обе схемы (рис. 1 и 2). Принципиальным отличием лампового усилителя от транзисторного является отсутствие в нем ООС. В транзисторном же усилителе каждый транзистор и усилитель в целом охвачены ООС. Действительно: Т1 охвачен местной последовательной ООС по тону через R3, Т2 охвачен местной ООС потоку через R 6, выходные транзисторы ТЗ и Т4 охвачены местными ООС по току через резисторы R7 и R8 с также последовательной ООС по напряжению через сопротивление громкоговорителя; усилитель в целом охвачен общей последовательной ООС по напряжению через делитель из резисторов R4 и R3 (рис.2).

О.: Хотя от использования ООС я вижу только пользу, однако готов предложить вам схему транзисторного усилителя, в котором ООС нет (см. рис. 3).


(с) А. Лихницкий.

 

Часть [1]  [2]

 

Опубликовано по материалам http://audioportal.ru/diy/lampvstr/

 

Статьи

Ламповый звук
Тайны лампового звука
Волшебство лампового звука [1] [2]
Когда лампа лучше, чем транзистор [1] [2]
Почему вакуумный триод звучит музыкально
Схемотехника ламповых усилителей
Лампы или транзисторы? Лампы!
Однотактный ламповый усилитель для начинающих
Двухтактные ламповые усилители
Оконечный пушпульный усилитель - схема Уильямсона-Хафлера-Кероеса
Рекомендации по повторению реплики схемы Уильямсона-Хафлера-Кероеса
Однотактный усилитель с непосредственной связью. Схема Loftin-White [1] [2]
Трехламповый усилитель Губина
Однотактник на 300В
Усилители низкой частоты
Расчет каскада с нагрузкой в аноде
Однотактный усилитель на лампе 807 [1] [2]
Циклотрон. Мощный усилитель с выходными лампами ГУ-50
SE на RB300
Однотактный усилитель мощности на 300В. Модель WE91 для 90-х годов [1] [2]
Как улучшить звучание HI-FI системы [1] [2] [3] [4] [5] [6]
Лампы и звук: назад, в будущее [1] [2] [3] [4] [5]
Однотактный ламповый ... [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Апгрейд усилителя XD845MKIII [1] [2]
"Усилитель" для наушников на SRPP [1] [2] [3] [4] [5] [6]
Ламповый High-End [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [...]
Обзор журнала Glass Audio за 1998 год [1] [2]
Обзор журнала Glass Audio за 1999 год
Корректор для винила
Компенсированные регуляторы громкости
Усилитель НЧ
Даешь ONGAKU!
Tubesaurus Rex
Усилитель НЧ с комбинированной обратной связью
Прибор для измерения напряжения накала высоковольтных кенотронов
George Ohm живет в Харькове
Ревизия однотактного усилителя с межкаскадным трансформатором
Усилитель мощности НЧ с высоким КПД
Двухканальный усилитель НЧ
Усилитель НЧ с клавишным переключателем
Радиотрансляционные установки ТУ-50 и ТУ-100
Портативный проигрыватель
Усилитель НЧ
Усилитель без выходного трансформатора
Усилители без выходного трансформатора
Лампово-полупроводниковый УМЗЧ
Акустика
Бытовые акустические системы [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Там, где живут басы [1] [2] [3] [4] [5] [6]
The Onken Enclosure
Категории слухового восприятия [1] [2]
Три взгляда на акустику помещений [1] [2]
Акустика в которой мы живем [1] [2]
Акустика офисов
Мифы звукоизоляции
Акустика отделочных материалов
Акустический агрегат с объемным звучанием
Акустические свойства домашней мебели
Акустические линзы для громкоговорителей
Акустические измерения в практике радиолюбителя
Акустический фазоинвертор
Акустика студий [1] [2]
Полезные советы разработчиков Hi-End
Триод против пентода. Что выбрать? [1] [2]
SINGLE-ENDED VS PUSH-PULL [1] [2] [3] [4] [5] [6] [7]
Одноламповые усилители низкой частоты
Как пользоваться характеристиками электронных ламп
Многоламповые усилители НЧ на импортных лампах
Контактно-резисторный коммутатор входов
Как проверять аппаратуру в салоне
Что лучше: 4 или 8 Ом акустика?
Выходной трансформатор для однотактника. Быть или не быть линейным
Простая и быстрая проверка трансформаторов
Десять способов усовершенствовать вашу аудиокомнату
Испытатель ламп
Понижение уровня фона в усилителях
Evolution
Пять правил рационального питания
Трансформаторы в однотактных усилителях
Выходные трансформаторы
Измерение характеристик выходного трансформатора [1] [2]
Однотактный «Magnum»
Какая лампа нам нужна
Какая лампа нам нужна и будет ли она?
Улучшенная конфигурация листов трансформаторной стали
Должен ли УМЗЧ иметь малое выходное сопротивление? [1] [2]
Звук: интересные наблюдения
Вся правда об акустике ProAc
Немного теории лампового звука
О заметности искажений
История лампы 300B
Краткая история возникновения Hi-Fi
Возможен ли "виниловый ренессанс?" [1] [2] [3]
Hi-End: Мифы и реальность [1] [2]
Как не заблудиться в кабельных джунглях?
Побалуйте свои уши! [1] [2]
Ограничение сигнала усилителем – можно ли работать в клиппинге?
"Хай-Энд" умер, да здравствует "Хай-Энд"! [1] [2]
Блестящие звукозаписи [1] [2] [3]
Семь слов об ошибках аудиоэкспертизы
Частотные, нелинейные и фазовые искажения
Внешние факторы, влияющие на восприятие звука
Многоканальный окружающий звук [1] [2] [3] [4]
Магнитная запись: мифы и реальность
Теория схемотехники и звукотехники
Для начинающих. Как работает усилитель [1] [2]
Принципы схемотехники электронных ламп [1] [2] [3] [4] [5] [6] [7] [8]
Хрестоматия радиолюбителя, 1963г. [1] [2] [3] [4] [5]
Конструктивный расчет входных и выходных трансформаторов [1] [2]
Как работают звуковые трансформаторы
Элементарная теория схем с обратной связью [1] [2] [3]
Теория звукотехники
Двухтактно-параллельный усилитель НЧ
Особенности стандартов, описывающих мощность в звукотехнике
Отрицательная обратная связь в усилителях
Классы усилителей мощности
Элементарная теория триода [1] [2] [3] [4] [5] [6] [7] [8] [9]
Как работает лучевой тетрод
О мощности, ваттах, децибелах... [1] [2]
Теория звука [1] [2] [3] [4]
Звук и цифровые технологии [1] [2] [3] [4] [5] [6]
Проектирование абсолютно устойчивых усилителей [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Звуковые форматы
Описание стандарта MP3
Правильная мощность
Начинающим. Радиолампа
Высококачественный усилитель низкой частоты
Объемный звук [1] [2] [3]
Парадоксы электрона
Вибратор к гитаре
Ламповый авометр
Старая и популярная 12АХ7/ЕСС83
Принцип устройства и работы электро-вакуумных приборов
Двухэлектродные лампы
Трехэлектродные лампы
Рабочий режим триода
Многоэлектродные и специальные лампы
Электронно-лучевые трубки
Газоразрядные и индикаторные приборы
Фотоэлектронные приборы
Собственные шумы электронных ламп
Особенности работы электронных ламп на СВЧ
Специальные электронные приборы для СВЧ
Надежность и испытание электровакуумных приборов
Основы схемотехники ламповых усилителей
Искажения в усилителях, их измерение, меры по снижению искажений
Основные сведения о радиокомпонентах
Источники питания
Каскады усиления мощности
Каскады предварительного усиления
Широкополосные усилители
Усилительный каскад с катодной нагрузкой [1] [2]
Life in Vacuum. EL34
Life in Vacuum. 6H8C, 6H9C
Life in Vacuum. SV572 SV6550 6C5C 6C3П/6C4П
Двойной триод 6Н3П
Пентод 6Ж5П
6П42С / 6П45С
Лучевой тетрод 6П1П
Пентод 6П14П в оконечном каскаде
Двойной триод 6Н14П
Кенотрон 1Ц11П
Демпферный диод 6Ц10П
Что и как мы слышим
 

 

 

Найти на сайте

 

Информация

Только к середине 80-х возникла новая волна спора между двухтактными усилителями на триодах и пентодных в ультралинейном включении. Противостояние касалось исключительно только РР схем; так что не будем обсуждать этот момент и скажем лишь одно - триоды вернулись, а наряду с ними вся орава усилителей с переключением триод/UL пентод.
    Вторая волна поднялась в начале 90-х, уже с знакомым нам конфликтом - двухтактные триоды против однотактных. Поскольку он так и не разрешен, им мы и займемся. Темы дебатов опять крутятся вокруг фазоинверторов, продуктов искажений, глубины ОС и вдруг всплывшего эффекта под названием "первый ватт".
    Далее...

 

Это интересно

Не хочется быть мелочным, но каждый биполярный (или полевой) транзистор имеет последовательную ООС по току, которая образуется в результате падения части сигнала на внутреннем сопротивлении эмиттера (истока) транзистора. Этими связями можно было бы пренебречь, если бы предлагаемая схема не нмела более серьезных недостатков.
    Первый - это на порядок бОльшие (по сравнению с ламповым усилителем) и неблагоприятные по спектру нелинейные искажения.
    Если ламповый усилитель не доводить до клиппинга, гармонические искажения на его выходе не превышают 1-3%, причем в составе этих искажений доминирует 3-я гармоника; вторая в результате действия принципа "тяни-толкай" компенсируется, а высшие гармоники затухают. В усилителе, показанном на рис. 3, сочетание нелинейностей входных и выходных характеристик биполярных транзисторов является причиной образования целого спектра гармонических, а в случае сложного сигнала - значительно больших по мощности интермодуляционных искажений высших порядков. Специалистам хорошо известно, что эффективных средств для уменьшения нелинейных искажений высших порядков нет. Применение ООС даже ухудшает положение, так как с ее помощью искажения низших порядков преобразуются в искажения более высоких порядков.
    Присутствие в музыкальном сигнале даже небольших по величине продуктов интермодуляции высших порядков вызывает у слушателя ощущение "металличности", жесткости, шероховатости, замутненности звучания, чаще всего такое звучание называют просто ненатуральным.
    Второй недостаток предложенной схемы - это зависимость параметров усилителя от мгновенной температуры кристаллов транзисторов. В этом нетрудно убедиться, собрав предлагаемую схему и наблюдая затем, как гуляют ток в транзисторах и напряжение на выходе усилителя, особенно если слегка подуть на собранную схему. Можно стабилизировать выход усилителя, применив для этого так называемый следящий привод (который, кстати, является разновидностью ООС), однако как решить проблему искажений, которые принято называть "тепловыми"?
    Тепловые искажения (Подробно о тепловых искажениях см. мою статью в журнале "Техника кино и телевидения". 1987, № 6.с. 10-17 ) возникают, когда изменение сигнала (напряжения и тока) на выходе транзистора сопровождается изменением рассеиваемой в нем мгновенной мощности и, как следствие, меняется мгновенная температура его кристалла, что вызывает следующие явления: в процессе усиления музыкального сигнала коэффициент усиления по току выходных транзисторов плавно (из-за инерции тепловых процессов) изменяется на 20-30%. Эти изменения, в свою очередь, становятся причиной инфразвуковых интермодуляционных искажений в усилителе, к которым ухо слушателя чрезвычайно чувствительно.
    Другое проявление тепловых искажений объясняется тем. что напряжение база - эмиттер зависит от температуры кристалла транзистора. Оказывается, что изменение напряжения (и тока) на выходе транзистора, которое представляет собой изменение рассеиваемой в нем мощности, сначала преобразуется а изменение температуры кристалла транзистора, а затем в изменение напряжения база - эмиттер, которое, в свою очередь, снова преобразуется в напряжение (и ток) на выходе транзистора. В результате этих преобразовании в каждом транзисторе усилителя (и особенно в изображенном на рис. 3) возникает нелинейная электротепловая отрицательная обратная связь, которая, если не использовать местные ООС по току, вызывает в области низких звуковых частот (ниже частоты 150 Гц) уменьшение усиления на 10-15 дБ, я также рост гармонических и интермодуляционных искажений, которые достигают 10-15%.
    Третий недостаток схемы усилителя показав на рис. 3 - это его недопустимо высокое выходное сопротивление. Если выходное сопротивление...
    Далее...

 

Информация

 

Усилитель ламповый XD850MKIII

 

XD850MKIII

 

Акустическая система Music Angel One

 Music Angel One

Усилитель ламповый XD800MKIII

 

XD800MKIII

 

Усилитель ламповый MINIP1

 

MINIP1