Усилители Music Angel

    XD500MKIII
    XD800MKIII
    XD845MKIII
    XD845LE
    XD850MKIII
    XD8502AIII
    XD900MKIII
    T24 фонокорректор

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Усилители ARIA

    MINI 6
    MINI 5.1
    MINIP1
    MINIL3
    MINIP14

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Усилители LACONIC

    AZUR H2
    HA-02
    HA-03B
    HA-03B2
    HA-03M
    Lunch Box Pro

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустические системы

    Music Angel One
    Music Angel 2.5
    Music Angel TK-10
    DIVA 5.2

Акустическая система Music Angel One: 20 - 100 Вт, 38 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 - 200 Вт, 20 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 - 250 Вт, 45 Гц - 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 - 150 Вт, 36 Гц - 20 кГц, 90 дБ/Вт/м

Комплектующие

    Лампы
    Кабели

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Это интересно

Звук - распространяющиеся в упругих средах, газах, жидкостях и твердых телах механические колебания, воспринимаемые ухом.
    Источник звука - различные колеблющиеся тела, например туго натянутая струна или тонкая стальная пластина, зажатая с одной стороны. Как возникают колебательные движения? Достаточно оттянуть и отпустить струну музыкального инструмента или стальную пластину, зажатую одним концом в тисках, как они будут издавать звук. Колебания струны или металлической пластинки передаются окружающему воздуху. Когда пластинка отклонится, например в правую сторону, она уплотняет (сжимает) слои воздуха, прилегающие к ней справа; при этом слой воздуха, прилегающий к пластине с левой стороны, разредится. При отклонении пластины в левую сторону она сжимает слои воздуха слева и разрежает слои воздуха, прилегающие к ней с правой стороны, и т.д. Сжатие и разрежение прилегающих к пластине слоев воздуха будет передаваться соседним слоям. Этот процесс будет периодически повторяться, постепенно ослабевая, до полного прекращения колебаний (рис. 1.1).
    Таким образом колебания струны или пластинки возбуждают колебания окружающего воздуха и, распространяясь, достигают уха человека, заставляя колебаться его барабанную перепонку, вызывая раздражение слухового нерва, воспринимаемое нами как звук.
    Колебания воздуха, источником которых является колеблющееся тело, называют звуковыми волнами, а пространство, в котором они распространяются, звуковым полем.
    Скорость распространения звуковых колебаний зависит от упругости среды, в которой они распространяются. В воздухе скорость распространения звуковых колебаний в среднем равна 330 м/с, однако она может изменяться в зависимости от его влажности, давления и температуры. В безвоздушном пространстве звук не распространяется.
    При распространении звука, вследствие колебаний частиц среды, в каждой точке звукового поля происходит периодическое изменение давления. Среднее квадратичное значение величины этого давления, обозначаемое буквой P, называют звуковым давлением. За единицу звукового давления принята величина, равная силе в один ньютон (Н), действующей на площадь в один квадратный метр (Н/м2).
    Чем больше звуковое давление, тем громче звук. При средней громкости человеческой речи звуковое давление на расстоянии 1м от рта говорящего находится в пределах 0,0064-0,64.
    Звуковые колебания
    Форма звуковых колебаний зависит от свойств источника звука. Наиболее простыми колебаниями являются равномерные или гармонические колебания, которые можно представить в виде синусоиды (рис. 1.2). колебания характеризуются частотой f, периодом Т и амплитудой А.
    Частотой колебаний называют количество полных колебаний в секунду. За единицу измерения частоты принят 1 герц (Гц). 1 герц соответствует одному полному (в одну и другую сторону) колебанию, происходящему за одну секунду.
    Периодом называют время (с), в течение которого происходит одно полное колебание. Чем больше частота колебаний, тем меньше их период, т.е. f=1/T. Таким образом, частота колебаний тем больше, чем меньше их период, и наоборот.
    Голос человека создает звуковые колебания частотой от 80 до 12000 Гц, а слух воспринимает звуковые колебания в диапазоне 16-20000 Гц.
    Амплитудой колебаний называют наибольшее отклонение колеблющегося тела от его первоначального (спокойного) положения. Чем больше амплитуда колебания, тем громче звук. Звуки человеческой речи представляют собой сложные звуковые колебания, состоящие из того или иного количества простых колебаний, различных по частоте и амплитуде. В каждом звуке речи имеется только ему свойственное сочетание колебаний различной частоты и амплитуды. Поэтому форма колебаний одного звука речи заметно отличается от формы другого, что видно на рис. 1.3, на котором изображены графики колебаний при произношении звуков...
    Далее...

 

Информация

 
 

Теория звука

 

Тембр звука

Негармоническое периодическое воздействие с периодом Т равносильно одновременному действию гармонических сил с различными частотами, а именно с частотами, кратными наиболее низкой частоте n=1/T.

Это заключение является частным случаем общей математической теоремы, которую доказал в 1822 г. Жан Батист Фурье. Теорема Фурье гласит: всякое периодическое колебание периода Т может быть представлено в виде суммы гармонических колебаний с периодами, равными Т, T/2, T/3, T/4 и т.д., т.е. с частотами n=(1/T), 2n, 3n, 4n и т.д. Наиболее низкая частота n называется основной частотой. Колебание с основной частотой n называется первой гармоникой или основным тоном (тоном), а колебания с частотами 2n, 3n, 4n и т.д. называются высшими гармониками или обертонами (первым - 2n, вторым - 3n и т.д.).

Рис. 1.5. Осциллограммы звуков рояля и кларнета.

Каждый звук, издаваемый различными музыкальными инструментами, голосами различных людей и т.п., имеет свои характерные особенности - своеобразную окраску или оттенок. Эти особенности звука называют тембром. На рис. 1.5 показаны осциллограммы звуковых колебаний, создаваемых роялем и кларнетом для одной и той же ноты. Осциллограммы показывают, что период у обоих колебаний одинаков, но они сильно отличаются друг от друга по своей форме и, следовательно, различаются своим гармоническим составом. Оба звука состоят из одних и тех же тонов, но в каждом из них эти тоны - основной и его обертоны - представлены с разными амплитудами и фазами.

Рис. 1.6. Спектры звуков рояля и кларнета.

Для нашего уха существенны только частоты и амплитуды тонов, входящих в состав звука, т.е. тембр звука определяется его гармоническим спектром. Сдвиги отдельных тонов по времени никак не воспринимаются на слух, хотя и могут очень сильно менять форму результирующего колебания.

На рис. 1.6 изображены спектры тех звуков, осциллограммы которых показаны на рис. 1.5. Так как высоты звуков одинаковы, то и частоты тонов - основного и обертонов - одни и те же. Однако амплитуды отдельных гармоник в каждом спектре сильно различаются.

Нелинейность слуха

Для нормального среднестатистического органа слуха человека существуют некоторые предельные (пороговые) минимальные значения физических параметров звукового поля, при которых еще существует слуховое ощущение. Таким порогом слышимости являются стандартизованная интенсивность звука I0=10...12 Вт/м2 (близкая к порогу слышимости при f=1000 Гц в тишине), а также соответствующие ей звуковое давление p0=2*10-5 Па и плотность звуковой энергии e03*10-15 Дж/м3. Порог слышимости является частнозависимым. Выше порога слышимости расположена область слышимости. На рис. 2.1 показана кривая порога слышимости. Там же показан и верхний порог слышимости, выше которого может наступить разрушение органа слуха - болевой порог, которому соответствует давление pmax=150...200 Па, что превосходит величину p0=2*10-5 Па в 107 раз.

Рис. 2.1. Кривые, ограничивающие область слышимости.

Для более удобного оперирования столь значительными абсолютными величинами, но в большей степени потому, что слуховое ощущение раздражающей силы звукового сигнала пропорционально ее логарифму (согласно закону Вебера-Фехнера), чаще используются величины, называемые уровнем интенсивности звука (LI), уровнем ощущения (E), уровнем звукового давления (LP), уровнем плотности звуковой энергии (LE), которые также пропорциональны логарифму относительного значения параметра (I/I0), (p/p0), (e/e0) и измеряются в децибелах:

 

    (2.1)

 

    (2.2)

 

    (2.3)

 

Рис. 2.2. Кривые равной громкости синусоидальных звуков.

Одинаковые относительные изменения раздражающей силы вызывают одинаковые приращения слухового ощущения. Эта особенность слуха также измерена: порог заметности изменения интенсивности (DI) чистых тонов на высоких и средних уровнях ощущения Е составляет от 0,2 до 0,6 дБ, на низких уровнях ощущения он доходит до нескольких децибел, а среднее значение DI/I около 1 дБ. Таким образом, между порогом слышимости и болевым порогом слух различает несколько сотен ступеней изменения слухового ощущения.

Амплитудная разрешающая способность слуха по ощущению изменений интенсивности звука имеет еще и частотную зависимость: она наиболее высока на средних, заметно меньше на высоких и еще меньше на низких частотах.

Рис. 2.3. Частотные характеристики чувствительности слуха при различных уровнях громкости.

Установлено, что уровень громкости неточно характеризует субъективное слуховое ощущение. Для преодоления этого было введено понятие уровня громкости (LG). За уровень громкости LG данного звука принимается уровень интенсивности равногромкого с ним чистого тона с частотой 1000 Гц. Единица измерения LG - фон. При бинауральном слушании (т.е. обоими ушами) чистых тонов для определения уровня громкости пользуются семейством изофон, т.е. кривыми равной громкости (рис. 2.2).

Иногда графики изофон вызывают некоторые трудности восприятия их сущности. Для упрощения понимания представлен более доступный график (рис. 2.3), характеризующий чувствительность слуха при различных уровнях громкости. Единицей измерения громкости принят 1 сон, соответствующий громкости тона с уровнем LG = 40 фон.

В таблице 2.1 приведены измеренные величины уровня громкости LG и громкости G для некоторых источников звука и градация громкости в музыкальных программах.

 

Таблица 2.1.

Источник звука

 LG, фон 

G, сонн

 Улица с интенсивным движением и трамваем 

75...80

 11.40...17.10 

Шумная улица без трамвая

60...75

4.35...11.40

Обычный средний шум на улице

55...60

3.08...4.35

Комната шумная

40...50

0.98...2.20

Комната тихая

25...30

0.20...0.36

Разговор трех человек в комнате

45...50

1.50...2.20

Оркестр

80...100

17.10...88.00

Зал при массовых сценах

75...90

11.40...59.00

Аплодисменты

60...75

4.35...11.40

Исполнение соло в студии

40...50

0.98...2.20

Форте фортиссимо

100

88.00

Фортиссимо

90

38.00

Форте

80

17.10

Меццо-форте

70

7.95

Меццо пиано

60

4.35

Пиано

50

2.20

Пианиссимо

40

0.98

Пиано пианиссимо

30

0.36

Порог слухового ощущения

0

0

 

Слуховой аппарат человека не способен абсолютно линейно ощущать воздействия звуков в значительном диапазоне интенсивностей. Нелинейность слуха проявляется в том, что при воздействии громких тонов с уровнем интенсивности более 40 дБ, например с частотой f1, в слуховом аппарате образуются гармоники этого тона с частотами 2f1, 3f1, 4f1 и т.д. При уровне интенсивности звука менее 40 дБ субъективные гармоники не образуются. Оптимальным уровнем, при котором заметность и порядковый номер гармоники относительно невелики, можно считать 80...90 дБ. Особенно диссонансны 7-я и 9-я гармоники. 2-я субъективная гармоники почти в 5 раз превосходит 3-ю. Этот факт иногда является основой для утверждения, что SE-усилители, в которых обычно преобладает уже объективная 2-я гармоника, более импонируют слуху, нежели РР-усилители, где доминирует 3-я объективная гармоника, к которой слух более чем в 1,5...2,0 раза чувствительнее. Термин "импонирует" следует понимать в том смысле, что слух не может отделить объективно привнесенные гармоники от собственных субъективных того же 2-го порядка, а потому их восприятие не вызывает дискомфорта. Попыткой воспользоваться этим свойством слуха явилось создание РР-усилителей со специально увеличенной 2-й гармоникой, что достигалось разбалансом драйверного каскада.

Чтобы снизить субъективные нелинейные искажения, следует не увлекаться чрезмерно громким звучанием, применять все компоненты аудиосистемы с достаточно линейными амплитудными характеристиками, применять компоненты как можно более широкополосные, особенно в сторону низких частот.

 

Опубликовано по материалам http://www.newsounds.ru/teor.php

 

Часть [1]  [2]  [3]  [4]


Статьи

Ламповый звук
Тайны лампового звука
Волшебство лампового звука [1] [2]
Когда лампа лучше, чем транзистор [1] [2]
Почему вакуумный триод звучит музыкально
Схемотехника ламповых усилителей
Лампы или транзисторы? Лампы!
Однотактный ламповый усилитель для начинающих
Двухтактные ламповые усилители
Оконечный пушпульный усилитель - схема Уильямсона-Хафлера-Кероеса
Рекомендации по повторению реплики схемы Уильямсона-Хафлера-Кероеса
Однотактный усилитель с непосредственной связью. Схема Loftin-White [1] [2]
Трехламповый усилитель Губина
Однотактник на 300В
Усилители низкой частоты
Расчет каскада с нагрузкой в аноде
Однотактный усилитель на лампе 807 [1] [2]
Циклотрон. Мощный усилитель с выходными лампами ГУ-50
SE на RB300
Однотактный усилитель мощности на 300В. Модель WE91 для 90-х годов [1] [2]
Как улучшить звучание HI-FI системы [1] [2] [3] [4] [5] [6]
Лампы и звук: назад, в будущее [1] [2] [3] [4] [5]
Однотактный ламповый ... [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Апгрейд усилителя XD845MKIII [1] [2]
"Усилитель" для наушников на SRPP [1] [2] [3] [4] [5] [6]
Ламповый High-End [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [...]
Обзор журнала Glass Audio за 1998 год [1] [2]
Обзор журнала Glass Audio за 1999 год
Корректор для винила
Компенсированные регуляторы громкости
Усилитель НЧ
Даешь ONGAKU!
Tubesaurus Rex
Усилитель НЧ с комбинированной обратной связью
Прибор для измерения напряжения накала высоковольтных кенотронов
George Ohm живет в Харькове
Ревизия однотактного усилителя с межкаскадным трансформатором
Усилитель мощности НЧ с высоким КПД
Двухканальный усилитель НЧ
Усилитель НЧ с клавишным переключателем
Радиотрансляционные установки ТУ-50 и ТУ-100
Портативный проигрыватель
Усилитель НЧ
Усилитель без выходного трансформатора
Усилители без выходного трансформатора
Лампово-полупроводниковый УМЗЧ
Акустика
Бытовые акустические системы [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Там, где живут басы [1] [2] [3] [4] [5] [6]
The Onken Enclosure
Категории слухового восприятия [1] [2]
Три взгляда на акустику помещений [1] [2]
Акустика в которой мы живем [1] [2]
Акустика офисов
Мифы звукоизоляции
Акустика отделочных материалов
Акустический агрегат с объемным звучанием
Акустические свойства домашней мебели
Акустические линзы для громкоговорителей
Акустические измерения в практике радиолюбителя
Акустический фазоинвертор
Акустика студий [1] [2]
Полезные советы разработчиков Hi-End
Триод против пентода. Что выбрать? [1] [2]
SINGLE-ENDED VS PUSH-PULL [1] [2] [3] [4] [5] [6] [7]
Одноламповые усилители низкой частоты
Как пользоваться характеристиками электронных ламп
Многоламповые усилители НЧ на импортных лампах
Контактно-резисторный коммутатор входов
Как проверять аппаратуру в салоне
Что лучше: 4 или 8 Ом акустика?
Выходной трансформатор для однотактника. Быть или не быть линейным
Простая и быстрая проверка трансформаторов
Десять способов усовершенствовать вашу аудиокомнату
Испытатель ламп
Понижение уровня фона в усилителях
Evolution
Пять правил рационального питания
Трансформаторы в однотактных усилителях
Выходные трансформаторы
Измерение характеристик выходного трансформатора [1] [2]
Однотактный «Magnum»
Какая лампа нам нужна
Какая лампа нам нужна и будет ли она?
Улучшенная конфигурация листов трансформаторной стали
Должен ли УМЗЧ иметь малое выходное сопротивление? [1] [2]
Звук: интересные наблюдения
Вся правда об акустике ProAc
Немного теории лампового звука
О заметности искажений
История лампы 300B
Краткая история возникновения Hi-Fi
Возможен ли "виниловый ренессанс?" [1] [2] [3]
Hi-End: Мифы и реальность [1] [2]
Как не заблудиться в кабельных джунглях?
Побалуйте свои уши! [1] [2]
Ограничение сигнала усилителем – можно ли работать в клиппинге?
"Хай-Энд" умер, да здравствует "Хай-Энд"! [1] [2]
Блестящие звукозаписи [1] [2] [3]
Семь слов об ошибках аудиоэкспертизы
Частотные, нелинейные и фазовые искажения
Внешние факторы, влияющие на восприятие звука
Многоканальный окружающий звук [1] [2] [3] [4]
Магнитная запись: мифы и реальность
Теория схемотехники и звукотехники
Для начинающих. Как работает усилитель [1] [2]
Принципы схемотехники электронных ламп [1] [2] [3] [4] [5] [6] [7] [8]
Хрестоматия радиолюбителя, 1963г. [1] [2] [3] [4] [5]
Конструктивный расчет входных и выходных трансформаторов [1] [2]
Как работают звуковые трансформаторы
Элементарная теория схем с обратной связью [1] [2] [3]
Теория звукотехники
Двухтактно-параллельный усилитель НЧ
Особенности стандартов, описывающих мощность в звукотехнике
Отрицательная обратная связь в усилителях
Классы усилителей мощности
Элементарная теория триода [1] [2] [3] [4] [5] [6] [7] [8] [9]
Как работает лучевой тетрод
О мощности, ваттах, децибелах... [1] [2]
Теория звука [1] [2] [3] [4]
Звук и цифровые технологии [1] [2] [3] [4] [5] [6]
Проектирование абсолютно устойчивых усилителей [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Звуковые форматы
Описание стандарта MP3
Правильная мощность
Начинающим. Радиолампа
Высококачественный усилитель низкой частоты
Объемный звук [1] [2] [3]
Парадоксы электрона
Вибратор к гитаре
Ламповый авометр
Старая и популярная 12АХ7/ЕСС83
Принцип устройства и работы электро-вакуумных приборов
Двухэлектродные лампы
Трехэлектродные лампы
Рабочий режим триода
Многоэлектродные и специальные лампы
Электронно-лучевые трубки
Газоразрядные и индикаторные приборы
Фотоэлектронные приборы
Собственные шумы электронных ламп
Особенности работы электронных ламп на СВЧ
Специальные электронные приборы для СВЧ
Надежность и испытание электровакуумных приборов
Основы схемотехники ламповых усилителей
Искажения в усилителях, их измерение, меры по снижению искажений
Основные сведения о радиокомпонентах
Источники питания
Каскады усиления мощности
Каскады предварительного усиления
Широкополосные усилители
Усилительный каскад с катодной нагрузкой [1] [2]
Life in Vacuum. EL34
Life in Vacuum. 6H8C, 6H9C
Life in Vacuum. SV572 SV6550 6C5C 6C3П/6C4П
Двойной триод 6Н3П
Пентод 6Ж5П
6П42С / 6П45С
Лучевой тетрод 6П1П
Пентод 6П14П в оконечном каскаде
Двойной триод 6Н14П
Кенотрон 1Ц11П
Демпферный диод 6Ц10П
Что и как мы слышим
 

 

 

Найти на сайте

 

Информация

Только к середине 80-х возникла новая волна спора между двухтактными усилителями на триодах и пентодных в ультралинейном включении. Противостояние касалось исключительно только РР схем; так что не будем обсуждать этот момент и скажем лишь одно - триоды вернулись, а наряду с ними вся орава усилителей с переключением триод/UL пентод.
    Вторая волна поднялась в начале 90-х, уже с знакомым нам конфликтом - двухтактные триоды против однотактных. Поскольку он так и не разрешен, им мы и займемся. Темы дебатов опять крутятся вокруг фазоинверторов, продуктов искажений, глубины ОС и вдруг всплывшего эффекта под названием "первый ватт".
    Далее...

 

Это интересно

Хорошо известно, что частотный диапазон слуха простирается от 16 до 20000 Гц. Слуховая память позволяет удерживать до нескольких сотен градаций частоты. Их число уменьшается с понижением интенсивности звука. Поэтому среднее число градаций не более 150. Устройство органа слуха часто уподобляют цепочке резонаторов, настроенных на определенные полосы частот. Такая модель показывает хорошее приближение к устройству и результатам действия реальной слуховой улитки, в которой расположена базилярная мембрана, содержащая свыше 20000 осязающих волокон, которые передают возбуждающее воздействие через нервные окончания в слуховой центр мозга, где и происходит обработка полученных сигналов, вследствие чего слушатель воспринимает (субъективно) образовавшийся слуховой образ. Если слуховая память уже содержит предваряющую эмпирическую информацию о подобном или близком слуховом образе, то мозг идентифицирует ее как знакомую, идентичную или тождественную.
    Частотную разрешающую способность слуха обеспечивают полосы пропускания, образованные специфическим устройством органа слуха. Их называют критическими полосками, иногда - частотными группами. Всего таких полосок 24. Поэтому считается, что слух как бы превращает широкополосный звук со сплошным спектром частот в дискретный, т.е. состоящий из конечного числа составляющих, соответствующих включенным в работу числу критических полосок. Ранее было отмечено, что разрешающая способность слуха по амплитуде составляет несколько сот ступеней ощущения.
    Таким образом, совокупная разрешающая способность слуха по амплитуде и частоте в пределах области слышимости, ограниченной снизу порогом слышимости, а сверху - болевым порогом, составляет около 22000 элементарных градаций звуковых ощущений. Своего рода четкость звукового изображения. Заметим для справки, что число градаций зрительных ощущений составляет около 600000...
    Как было отмечено, орган слуха имеет 24 критические полоски, определяющие дискретную избирательность слуха и его разрешающую способность по частоте. Если среднее число ощущаемых градаций по частоте около 150, то максимальное может доходить до 620 при высокой интенсивности звука.
    При уровне звукового давления LP=70дБ на частотах менее 500 Гц слышны отклонения частоты тона на 1,8 Гц; выше же 500 Гц слышны отклонения порядка 0,35% от частоты тона. Частота тона является параметром раздражения органа слуха. Субъективным параметром ощущения частоты тона является высота тона. До частот 500 - 1000 Гц изменения частоты тона (раздражение) и высоты тона (ощущение) описывается логарифмическим законом, выше частоты 500 - 1000 Гц связь раздражения и ощущения все более отличается от логарифмической зависимости (рис. 2.4). За единицу высоты тона как параметра ощущения выбран "мел". Тон частотой 131 Гц (нота "до" малой октавы) имеет высоту тона z=131 мел. Более крупной величиной измерения высоты тона принят "барк": 1 барк = 100 мел.
    Звуковое раздражение передается на базилярную мембрану, имеющую длину 32 мм. Вдоль мембраны в кортиевом органе располагаются связующие волокна по 3500 в каждом. Раздражение тоном определенной частоты вызывает возбуждение некоторых волокон...
    Далее...

 

Информация

 

Усилитель ламповый XD850MKIII

 

XD850MKIII

 

Акустическая система Music Angel One

 Music Angel One

Усилитель ламповый XD800MKIII

 

XD800MKIII

 

Усилитель ламповый MINIP1

 

MINIP1