Усилители Music Angel

    XD500MKIII
    XD800MKIII
    XD845MKIII
    XD845LE
    XD850MKIII
    XD8502AIII
    XD900MKIII
    T24 фонокорректор

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Усилители ARIA

    MINI 6
    MINI 5.1
    MINIP1
    MINIL3
    MINIP14

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Усилители LACONIC

    AZUR H2
    HA-02
    HA-03B
    HA-03B2
    HA-03M
    Lunch Box Pro

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустические системы

    Music Angel One
    Music Angel 2.5
    Music Angel TK-10
    DIVA 5.2

Акустическая система Music Angel One: 20 - 100 Вт, 38 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 - 200 Вт, 20 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 - 250 Вт, 45 Гц - 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 - 150 Вт, 36 Гц - 20 кГц, 90 дБ/Вт/м

Комплектующие

    Лампы
    Кабели

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Это интересно

Все процессы записи, обработки и воспроизведения звука так или иначе работают на один орган, которым мы воспринимаем звуки — ухо. Две штуки :). Без понимания того, что мы слышим, что нам важно, а что нет, в чем причина тех или иных музыкальных закономерностей — без этих и других мелочей невозможно спроектировать хорошую аудио аппаратуру, нельзя эффективно сжать или обработать звук. То, что здесь описано — лишь самые основы. Да всего описать и нельзя — процесс звуковосприятия еще далеко не до конца изучен. Эти основы, однако, могут показаться интересными даже тем, кто знает, что такое децибел — мы всё же пойдем немного дальше того, что описано в справках к программам обработки звука...
    Снаружи мы видим так называемое внешнее ухо. Ничего особенного нас тут не интересует. Затем идет канал — примерно 0.5 см в диаметре и около 3 см в длину. Далее — барабанная перепонка, к которой присоединены кости — среднее ухо. Эти косточки передают вибрацию барабанной перепонки далее — на другую перепонку, во внутреннее ухо — трубку с жидкостью, около 0.2 мм диаметром и еще целых 3-4 см длинной, закрученная как улитка. Смысл наличия среднего уха в том, что колебания воздуха слишком слабы, чтобы напрямую колебать жидкость, и среднее ухо вместе с барабанной перепонкой и перепонкой внутреннего уха составляют гидравлический усилитель — площадь барабанной перепонки во много раз больше перепонки внутреннего уха, поэтому давление (которое равно F/S) усиливается в десятки раз.
    Во внутреннем ухе по всей его длине натянута некая штука, напоминающая струну — еще одна вытянутая мембрана, жесткая к началу уха и мягкая к концу. Определенный участок этой мембраны колеблется в своём диапазоне, низкие частоты — в мягком участке ближе к концу, самые высокие — в самом начале. Вдоль этой мембраны расположены нервы, которые воспринимают колебания и передают их в мозг, используя два принципа:
    Первый — ударный принцип. Поскольку нервы еще способны передавать колебания (бинарные импульсы) с частотой до 400-450 Гц, именно этот принцип влоб используется в области низкочастотного слуха. Там сложно иначе — колебания мембраны слишком сильны и затрагивают слишком много нервов. Ударный принцип немного расширяется до примерно 4 кГц с помощью трюка — несколько (до десяти) нервов ударяют в разных фазах, складывая свою пропускную способность. Этот способ хорош тем, что мозг воспринимает информацию более полно — с одной стороны, мы всё таки имеем легкое частотное разделение, а с другой — можем еще смотреть сами колебания, их форму и особенности, а не просто частотный спектр. Этот принцип продлен на самую важную для нас часть — спектр человеческого голоса. Да и вообще, до 4 кГц находится вся наиболее важная для нас информация.
    Ну и второй принцип — просто местоположение возбуждаемого нерва, применяется для звуков более 4 кГц. Тут уже кроме факта нас вообще ничего не волнует — ни фаза, ни скважность.. Голый спектр.
    Таким образом, в области высоких частот мы имеем чисто спектральный слух не очень высокого разрешения, а для частот близких к человеческому голосу — более полный, основанный не только на разделении спектра, а еще и на дополнительном анализе информации самим мозгом, давая более полную стерео — картину, например. Об этом — ниже.
    Основное восприятие звука происходит в диапазоне 1 — 4 кГц, в этом же диапазоне заключено человеческий голос (да и звуки, издаваемые большинством важных нам процессов в природе). Корректная передача этого частотного отрезка — первое условие естественности звучания.
    О чувствительности (по мощности и частотной):
    Теперь о децибелах. Я не буду с нуля объяснять, что это такое, вкратце — аддитивная относительная логарифмическая мера громкости (мощности) звука, наиболее хорошо отражающая человеческое восприятие громкости, и в то же время достаточно просто вычисляемая.
    В акустике принято измерять громкость в дБ SPL (Sound Power Level — не знаю как это звучит у нас). Ноль этой шкалы находится примерно на минимальном звуке, который слышит человек. Соответственно отсчет ведется в положительную сторону. Человек может осмысленно слышать звуки громкостью примерно до 120 дБ SPL. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение ушей. Нормальный разговор — примерно 60 — 70 дБ SPL. Далее в этом разделе при упоминании дБ подразумевается дБ от нуля по SPL.
    Чувствительность уха к разным частотам очень сильно различна. Максимальна чувствительность в районе 1 — 4 кГц, основные тона человеческого голоса. Звук 3 кГц — это и есть тот звук, который слышен при 0 дБ. Чувствительность сильно падает в обе стороны — например для звука в 100 Гц нам нужно уже целых 40 дБ (в 100 раз большая амплитуда колебаний), для 10 кГц — 20 дБ. Обычно мы можем сказать, что два звука отличаются по громкости, при разнице примерно в 1 дБ. Несмотря на это, 1 дБ — это скорее много, чем мало. Просто у нас очень сильно компрессированное, выровненное восприятие громкости. Зато весь диапазон — 120 дБ — воистину огромен, по амплитуде это миллионы раз!
    Кстати, увеличение амплитуды в два раза соответствует увеличению громкости на 6 дБ. Внимание! не путайте: 12 дБ — в 4 раза, но разница 18 дБ — уже 8 раз! а не 6, как могло подуматься. дБ — логарифмическая мера)
    Аналогична по свойствам и спектральная чувствительность. Мы можем сказать, что два звука (простых тона) отличаются по частоте, если разница между ними составляет около 0.3% в районе 3 кГц, а в районе 100 Гц...
    Далее.....

 

Информация

 
 

Акустика студий

 

ЧАСТЬ 1

Введение

Настоящая статья является первой из намеченной серии публикаций, подготовленных членами российской секции международного звукотехнического общества (AES) по заказу редакции журнала 625. Основная задача этой серии состоит в представлении современной информации по профессиональной звукотехнике для практических работников радиодомов, телецентров, студий звукозаписи и т.п. Поскольку студия является головным звеном тракта вещания и звукозаписи, то логично посвятить первую статью серии именно вопросам студийной акустики. Статья не является оригинальной научной работой. Она также не ставит своей целью дать подготовку в области акустического проектирования. Цель публикации заключается в том, чтобы ознакомить читателя с основами студийной акустики и теми требованиями, которые предъявляются к студиям различного назначения.

Некоторые понятия и определения

Для описания звуковых полей в акустике широко используется звуковое давление p, измеряемое в Паскалях (Па). Так же как и применительно к электрическим величинам в звукотехнике, здесь обычно оказывается удобнее пользоваться логарифмической шкалой. При этом вводится понятие уровня звукового давления (УЗД) L=20 lg (p/p0), где p0 = 2 х 10-5 Па — звуковое давление на пороге слышимости. Весьма часто УЗД измеряют (или вычисляют) в отдельных частотных полосах. Наибольшее распространение получили октавные или 1/3 октавные полосы с относительно постоянной шириной полосы. Среднегеометрические (ниже в тексте для краткости — средние) частоты этих полос регламентированы международными и отечественными стандартами. Предпочтительный ряд средних частот для октавных полос: ...125, 250, 500,... Гц; для 1/3 октавных полос: ...125, 160,200, 250,... Гц. Помимо указанных узких частотных полос применяется и широкополосная коррекция, форма которой обозначается буквами A, B, C,... и также строго регламентирована. Наиболее часто из них применяется кривая A. При ее использовании говорят об уровнях звука по кривой A и вводят обозначение дБA.

Для оценки способности материала или конструкции поглощать звуковую энергию используют, в частности, понятие коэффициента звукопоглощения (КЗП). Он равен отношению поглощенной данным материалом звуковой энергии ко всей падающей на материал звуковой энергии, т.е. a = Епогл/Епад. Таким образом, в экстремальных случаях, a = 1 когда вся звуковая энергия полностью поглощается материалом, и a = 0, когда вся звуковая энергия полностью отражается от материала. КЗП определяют в октавных (реже в 1/3 октавных) полосах, используя обычно диапазон от 125 до 4000 Гц. Иногда в справочной литературе можно встретить значения КЗП большие, чем 1. Казалось бы, это физически некорректный результат, т.к. поглощенная энергия оказывается больше падающей. Фактически, разумеется, принцип сохранения энергии нарушен быть не может, и величины > 1 связаны лишь с особенностями измерения КЗП при размещении материала в реверберационной камере.

Одним из важнейших понятий акустики помещений является время реверберации Т. Под этой величиной подразумевается временной интервал, в течение которого УЗД в помещении падает на 60 дБ после выключения звукового источника. Величины Т, так же как и КЗП, измеряют (или вычисляют) в октавных или 1/3 октавных полосах.

Классификация студий

Ведя речь о классификации, обычно используют формулировки нормативных документов. Следует отметить, организациями по стандартизации обычно не уделялось особого внимания акустическим показателям студий. Известны некоторые национальные и отраслевые стандарты, включая нормы бывшего Гостелерадио, а также несколько рекомендаций международной организации по радиовещанию и телевидению (ОИРТ). Сейчас Технический Комитет ОИРТ прекратил свое существование, но следует учесть, что сравнительно недавно большинство рекомендаций ОИРТ в области акустики были пересмотрены и, в основном, не потеряли своей актуальности.

Поскольку в современных публикациях по акустике студий ссылки на эти рекомендации встречаются весьма часто, то представляется оправданным использовать их и в данной статье. Итак, достаточно общепринятой является следующая классификация студий (цифры после буквы «С»- студия указывают на площадь помещения в кв. м.). По радиовещанию: большая (С-1000), средняя (С-450), малая (С-250) и камерная (С-150) музыкальные студии; литературно-драматическая студия (С-100); заглушенная студия (С-50) и речевая дикторская студия (С-24-36). По телевидению: большая (С-450-600), средняя (С-300), малая (С-150) и дикторская программная (С-60-80) телевизионные студии.

Требования к уровню звукового фона в студиях приведены в таблице, где указаны предельно допустимые УЗД в октавных полосах и в дБA (последние лишь для ориентировочной оценки). Следует отметить, что измерения УЗД шума проводятся в пустой студии при закрытых дверях и включенных системах кондиционирования, спецосвещения и технологическом оборудовании. Последние требования характерны для ТВ студий и означают, что при измерении звукового фона должно быть включено на типовой режим спецосвещение, а также размещенные в студии камеры и мониторы. Помимо указанных требований к уровню звукового фона, регламентируются также оптимальные значения времени реверберации. Эти величины будут рассмотрены ниже, дифференцированно по отдельным типам студий.

Таблица

  Максимально допустимые УЗД шума для разных  
типов студий и аппаратных

Средние частоты
октавных полос, Гц

Номер максимально
допустимой кривой

 

1

2

3

4

5

31,5

53

55

57

59

62

63

37

41

45

48

52

125

24

29

34

38

43

250

16

21

26

31

35

500

12

16

20

24

29

1000

10

12

16

20

25

2000

10

10

13

17

22

4000

10

10

12

15

20

8000

10

10

12

15

20

16000

10

10

12

15

20

Уровни звука в дБА

20

22

26

30

34

Основные принципы акустического проектирования

Как будет ясно из дальнейшего изложения, основные принципы акустического проектирования студий достаточно просты. Тем не менее, данный раздел хотелось бы начать с одной рекомендации, обращенной как к работникам радиодомов и телецентров, так и к людям, решившим организовать новую студию: НЕ СЛЕДУЕТ ПЫТАТЬСЯ САМОСТОЯТЕЛЬНО СПРОЕКТИРОВАТЬ СТУДИЮ ИЛИ АППАРАТНУЮ. ВСЕГДА ЦЕЛЕСООБРАЗНЕЕ ОБРАТИТЬСЯ К СПЕЦИАЛИСТАМ-ПРОФЕССИОНАЛАМ. В подтверждение этой рекомендации можно привести следующие доводы.

Во-первых, обеспечить в одном и том же помещении оптимум реверберации можно в принципе совершенно различными конструктивными решениями. При этом надо выбрать наиболее подходящий вариант, как по экономическим и эстетическим соображениям, так и по наиболее благоприятной структуре импульсного отклика. Для решения этой проблемы надо иметь достаточный практический опыт проектирования и настройки студий.

Во-вторых, надо учесть, что расчеты фонда звукопоглощения помещений не являются абсолютно точными. Это связано с целой группой факторов, в том числе с тем, что используемые при расчетах справочные данные о КЗП различных материалов и конструкций являются среднестатистическими. Реально значения КЗП могут в определенной степени отличаться от справочных данных, что обуславливает необходимость корректировки времени реверберации в построенном помещении.

Подобная корректировка, называемая также акустической настройкой, является обязательной процедурой перед вводом в эксплуатацию любой студии. Поэтому опытный консультант всегда старается предусмотреть в проекте конструктивные решения, позволяющие проводить акустическую настройку достаточно быстро и без сколько-нибудь существенных дополнительных капитальных затрат. Бывают варианты, когда найти подобные решения оказывается довольно сложно. Разумеется, процедура акустической настройки базируется на проведенных в студии акустических измерениях, для чего надо иметь соответствующее аппаратное оснащение. Сейчас в этой области достигнут значительный прогресс, и в мировой практике повсеместно применяется для данной цели цифровая измерительная аппаратура с процессорным управлением. При проведении акустических измерений в студиях не ограничиваются определением только нормированных показателей, т.е. временем реверберации и УЗД шума. Необходимо определять также структуру звуковых отражений и целый ряд дополнительных параметров акустического качества: индекс прозрачности, индекс четкости, время раннего затухания и др.

В подтверждение целесообразности привлечения к проектированию студий высококвалифицированных специалистов можно привести и тот факт, что исправление акустики студии с неудовлетворительным качеством звучания может в ряде случаев потребовать капитальных затрат, соизмеримых со стоимостью всех первоначальных работ. Известны печальные примеры, когда подобные работы столь дороги и трудоемки, что студии в течение всего периода их существования эксплуатируются с явно неудовлетворительным качеством звучания. что вызывает закономерные жалобы звукорежиссеров. В конце статьи приведен перечень российских организаций, имеющих опыт профессиональной работы в области архитектурной акустики.

При акустическом проектировании студий приходится сталкиваться с двумя основными группами задач. Первая из них связана с защитой студий от проникающих звуковых помех, а вторая — с получением оптимальной структуры звукового поля непосредственно внутри студии. Поскольку первая группа задач решается методами строительной акустики, а вторая — архитектурной акустики, то они будут рассмотрены отдельно.

Защита студий от звуковых помех

Можно выделить три основных механизма, приводящих к образованию звукового фона в студиях. Первый из них — это вентиляционные шумы, обусловленные работой моторов вентиляторов и процессами распространения звука в воздуховодах. Второй — это так называемый воздушный шум. Данный механизм связан с проникновением звука через студийные ограждения. Источниками воздушного шума могут являться транспортные шумы (если ограждение студии является наружной стеной здания), звук работающих в смежной аппаратной контрольных агрегатов, разговоры в смежных со студией коридорах и помещениях и т.п. Наконец, третий механизм, структурный звук, связан с распространением звуковых волн по перекрытиям и ограждениям здания при возбуждении их в форме вибрационных нагрузок. Типичными примерами источников структурного звука являются шаги в смежных со студией коридорах и расположенных над студией помещениях, а также хлопки при закрытии дверей. Структурные шумы могут также возникать при работе лифтов и другого технологического оборудования.

Борьба со всеми указанными источниками шумов должна проводиться в комплексе. Опыт показывает, что принципиально важно правильно выбрать объемно-планировочное решение аппаратно-студийных помещений в зданиях. Поэтому в случае строительства нового аппаратно-студийного комплекса целесообразно специалиста-акустика привлекать к проектированию на самой ранней его стадии, когда составляются поэтажные планы будущего здания. Только в этом случае удается выбрать оптимальное размещение студий, обеспечивающее их защиту от шума при минимальных капитальных затратах.

Методика расчета вентиляционных шумов в настоящее время достаточно хорошо разработана. Для каждой конкретной студии с учетом числа исполнителей и типов выделяющего тепло технологического оборудования определяется требуемый воздухообмен. На основе этих данных выбираются параметры вентсистемы и типы вентиляторов. После этого с учетом конкретной конфигурации системы выбираются глушители шума, обеспечивающие снижение шума вентсистем до требуемого уровня. Обычно для студий требуется минимально две группы глушителей: магистральные — на выходе патрубков моторов вентиляторов и секционные — перед входами воздуховодов в студию. Расчеты по методике хотя и достаточно громоздки, но позволяют достаточно точно определить требования к типу и конструкции глушителей, обеспечивающих требуемое снижение шума. Весьма важно, чтобы при производстве работ не проводились произвольные изменения параметров системы. Известны примеры, когда принятое при строительстве занижение сечения коробов вентсистемы приводило к столь большому уровню шума, что студии совсем не могли эксплуатироваться при включенной вентиляции. В целом же при корректном проектировании борьба с вентиляционными шумами может проводиться вполне успешно и представляет собой чисто инженерную задачу.

Задача снижения воздушного звука в своей постановке достаточно проста. После выбора объемно-планировочного решения студии становятся известны возможные источники шума в смежных помещениях. Обычно среди них наибольший УЗД создают работающие в смежной аппаратной контрольные агрегаты. Зная этот УЗД (он определен в Рекомендации ТК ОИРТ 86/3) и допустимый уровень шума, можно определить требования к звукоизоляции (ЗИ) ограждения. Довольно распространенной является ошибка, при которой требуемую ЗИ определяют как простую разность уровней между шумным и изолируемым помещениями. Реально же следует при определении ЗИ учитывать также площадь ограждения и время реверберации в изолируемом помещении.

Наиболее сложной является проблема борьбы со структурным звуком. Связано это с тем, что требуется обеспечить полную акустическую развязку между внутренними ограждениями студии и конструкциями здания. Ситуация усугубляется и отсутствием инженерной методики расчета распространения структурных шумов по реальным конструкциям здания. На практике для эффективного ослабления структурного звука широкое распространение получил принцип коробка в коробке. При этом внутренняя коробка студии (стены, пол и перекрытие) являются независимыми и не имеют жесткой связи с другими конструкциями здания. Последнее достигается либо устройством внутренней коробки на отдельном фундаменте (что, естественно возможно только при размещении студии на нижнем этаже), либо опиранием пола внутренней коробки на несущее перекрытие не непосредственно, а через упругий слой. В качестве него могут использоваться пружинные амортизаторы, резиновые кубики или иные упругие прокладки. При тщательном качестве выполнения строительных работ подобное решение обеспечивает вполне достаточную ЗИ.

Отметим, что в отечественной практике (за редким исключением) получил распространение лишь один конструктивный подход к реализации принципа коробка в коробке. Он заключается в том, что двойные ограждения студии, образующие внутреннюю и внешнюю коробку, выполняются в виде кирпичных стен, каждая из которых опирается на собственный фундамент. Такой подход является очень трудоемким и дорогостоящим. Кроме того, его эффективность очень критична к качеству строительных работ. Например, наличие забытого строительного мусора в промежутке между ограждениями внешней и внутренней коробок или плохо выполненная расшивка акустического шва во входном тамбуре приводят к резкому снижению ЗИ структурного звука и сводят на нет все дорогостоящие затраты на сооружение подобной конструкции.

В зарубежной практике для ЗИ студий почти повсеместно используются легкие многослойные ограждающие конструкции. При этом широко применяются укрепляемые по металлическому каркасу в несколько слоев гипсовые обшивочные листы. Наличие упругих прокладок между этими листами обеспечивает эффективное ослабление структурного звука. В последние годы стал широко рекламироваться модульный принцип устройства студий. Он исходит из применения упомянутых многослойных ограждений, конструкция которых очень тщательно отработана. Подобная студия может быть вписана в любое помещение достаточно больших размеров. Известно несколько конструктивных подходов. Достаточно часто на ограждение исходного помещения кладут резиновые кубики, выполняющие роль амортизаторов и ослабляющих передачу вибраций на ограждения будущей студии. На эти кубики кладут панели пола, крепят металлический каркас, а затем обшивают его панелями, образующими стены и перекрытие студии. Предусмотрены стеновые панели с заранее встроенными смотровым окном и входными студийными дверями. Все необходимые для сооружения такой студии материалы достаточно легкие и могут транспортироваться в обычном грузовике. Ряд изготовителей с гордостью сообщает, что подобная студия может быть полностью смонтирована и сдана в эксплуатацию за несколько часов.

 

Часть [1]  [2]

 

Статьи

Ламповый звук
Тайны лампового звука
Волшебство лампового звука [1] [2]
Когда лампа лучше, чем транзистор [1] [2]
Почему вакуумный триод звучит музыкально
Схемотехника ламповых усилителей
Лампы или транзисторы? Лампы!
Однотактный ламповый усилитель для начинающих
Двухтактные ламповые усилители
Оконечный пушпульный усилитель - схема Уильямсона-Хафлера-Кероеса
Рекомендации по повторению реплики схемы Уильямсона-Хафлера-Кероеса
Однотактный усилитель с непосредственной связью. Схема Loftin-White [1] [2]
Трехламповый усилитель Губина
Однотактник на 300В
Усилители низкой частоты
Расчет каскада с нагрузкой в аноде
Однотактный усилитель на лампе 807 [1] [2]
Циклотрон. Мощный усилитель с выходными лампами ГУ-50
SE на RB300
Однотактный усилитель мощности на 300В. Модель WE91 для 90-х годов [1] [2]
Как улучшить звучание HI-FI системы [1] [2] [3] [4] [5] [6]
Лампы и звук: назад, в будущее [1] [2] [3] [4] [5]
Однотактный ламповый ... [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Апгрейд усилителя XD845MKIII [1] [2]
"Усилитель" для наушников на SRPP [1] [2] [3] [4] [5] [6]
Ламповый High-End [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [...]
Обзор журнала Glass Audio за 1998 год [1] [2]
Обзор журнала Glass Audio за 1999 год
Корректор для винила
Компенсированные регуляторы громкости
Усилитель НЧ
Даешь ONGAKU!
Tubesaurus Rex
Усилитель НЧ с комбинированной обратной связью
Прибор для измерения напряжения накала высоковольтных кенотронов
George Ohm живет в Харькове
Ревизия однотактного усилителя с межкаскадным трансформатором
Усилитель мощности НЧ с высоким КПД
Двухканальный усилитель НЧ
Усилитель НЧ с клавишным переключателем
Радиотрансляционные установки ТУ-50 и ТУ-100
Портативный проигрыватель
Усилитель НЧ
Усилитель без выходного трансформатора
Усилители без выходного трансформатора
Лампово-полупроводниковый УМЗЧ
Акустика
Бытовые акустические системы [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Там, где живут басы [1] [2] [3] [4] [5] [6]
The Onken Enclosure
Категории слухового восприятия [1] [2]
Три взгляда на акустику помещений [1] [2]
Акустика в которой мы живем [1] [2]
Акустика офисов
Мифы звукоизоляции
Акустика отделочных материалов
Акустический агрегат с объемным звучанием
Акустические свойства домашней мебели
Акустические линзы для громкоговорителей
Акустические измерения в практике радиолюбителя
Акустический фазоинвертор
Акустика студий [1] [2]
Полезные советы разработчиков Hi-End
Триод против пентода. Что выбрать? [1] [2]
SINGLE-ENDED VS PUSH-PULL [1] [2] [3] [4] [5] [6] [7]
Одноламповые усилители низкой частоты
Как пользоваться характеристиками электронных ламп
Многоламповые усилители НЧ на импортных лампах
Контактно-резисторный коммутатор входов
Как проверять аппаратуру в салоне
Что лучше: 4 или 8 Ом акустика?
Выходной трансформатор для однотактника. Быть или не быть линейным
Простая и быстрая проверка трансформаторов
Десять способов усовершенствовать вашу аудиокомнату
Испытатель ламп
Понижение уровня фона в усилителях
Evolution
Пять правил рационального питания
Трансформаторы в однотактных усилителях
Выходные трансформаторы
Измерение характеристик выходного трансформатора [1] [2]
Однотактный «Magnum»
Какая лампа нам нужна
Какая лампа нам нужна и будет ли она?
Улучшенная конфигурация листов трансформаторной стали
Должен ли УМЗЧ иметь малое выходное сопротивление? [1] [2]
Звук: интересные наблюдения
Вся правда об акустике ProAc
Немного теории лампового звука
О заметности искажений
История лампы 300B
Краткая история возникновения Hi-Fi
Возможен ли "виниловый ренессанс?" [1] [2] [3]
Hi-End: Мифы и реальность [1] [2]
Как не заблудиться в кабельных джунглях?
Побалуйте свои уши! [1] [2]
Ограничение сигнала усилителем – можно ли работать в клиппинге?
"Хай-Энд" умер, да здравствует "Хай-Энд"! [1] [2]
Блестящие звукозаписи [1] [2] [3]
Семь слов об ошибках аудиоэкспертизы
Частотные, нелинейные и фазовые искажения
Внешние факторы, влияющие на восприятие звука
Многоканальный окружающий звук [1] [2] [3] [4]
Магнитная запись: мифы и реальность
Теория схемотехники и звукотехники
Для начинающих. Как работает усилитель [1] [2]
Принципы схемотехники электронных ламп [1] [2] [3] [4] [5] [6] [7] [8]
Хрестоматия радиолюбителя, 1963г. [1] [2] [3] [4] [5]
Конструктивный расчет входных и выходных трансформаторов [1] [2]
Как работают звуковые трансформаторы
Элементарная теория схем с обратной связью [1] [2] [3]
Теория звукотехники
Двухтактно-параллельный усилитель НЧ
Особенности стандартов, описывающих мощность в звукотехнике
Отрицательная обратная связь в усилителях
Классы усилителей мощности
Элементарная теория триода [1] [2] [3] [4] [5] [6] [7] [8] [9]
Как работает лучевой тетрод
О мощности, ваттах, децибелах... [1] [2]
Теория звука [1] [2] [3] [4]
Звук и цифровые технологии [1] [2] [3] [4] [5] [6]
Проектирование абсолютно устойчивых усилителей [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Звуковые форматы
Описание стандарта MP3
Правильная мощность
Начинающим. Радиолампа
Высококачественный усилитель низкой частоты
Объемный звук [1] [2] [3]
Парадоксы электрона
Вибратор к гитаре
Ламповый авометр
Старая и популярная 12АХ7/ЕСС83
Принцип устройства и работы электро-вакуумных приборов
Двухэлектродные лампы
Трехэлектродные лампы
Рабочий режим триода
Многоэлектродные и специальные лампы
Электронно-лучевые трубки
Газоразрядные и индикаторные приборы
Фотоэлектронные приборы
Собственные шумы электронных ламп
Особенности работы электронных ламп на СВЧ
Специальные электронные приборы для СВЧ
Надежность и испытание электровакуумных приборов
Основы схемотехники ламповых усилителей
Искажения в усилителях, их измерение, меры по снижению искажений
Основные сведения о радиокомпонентах
Источники питания
Каскады усиления мощности
Каскады предварительного усиления
Широкополосные усилители
Усилительный каскад с катодной нагрузкой [1] [2]
Life in Vacuum. EL34
Life in Vacuum. 6H8C, 6H9C
Life in Vacuum. SV572 SV6550 6C5C 6C3П/6C4П
Двойной триод 6Н3П
Пентод 6Ж5П
6П42С / 6П45С
Лучевой тетрод 6П1П
Пентод 6П14П в оконечном каскаде
Двойной триод 6Н14П
Кенотрон 1Ц11П
Демпферный диод 6Ц10П
Что и как мы слышим
 
 
 

Найти на сайте

 

Информация

Только к середине 80-х возникла новая волна спора между двухтактными усилителями на триодах и пентодных в ультралинейном включении. Противостояние касалось исключительно только РР схем; так что не будем обсуждать этот момент и скажем лишь одно - триоды вернулись, а наряду с ними вся орава усилителей с переключением триод/UL пентод.
    Вторая волна поднялась в начале 90-х, уже с знакомым нам конфликтом - двухтактные триоды против однотактных. Поскольку он так и не разрешен, им мы и займемся. Темы дебатов опять крутятся вокруг фазоинверторов, продуктов искажений, глубины ОС и вдруг всплывшего эффекта под названием "первый ватт".
    Далее...

 

Это интересно

Основным этапом проектирования является подбор фонда звукопоглощения помещения, который обеспечивал бы требуемые значения времени реверберации при оптимальной структуре ранних звуковых отражений. Подобные расчеты обычно производятся по формуле Эйринга. Исходными данными для их проведения являются объем помещения, общая площадь его внутренних поверхностей и требуемый оптимум реверберации. Расчеты проводят для отдельных октавных полос, используя обычно частотный диапазон от 125 до 4000 Гц. В справочных руководствах приводятся значения КЗП различных звукопоглощающих материалов и конструкций, а также данные о звукопоглощении исполнителей, кресел и других предметов.
    Прежде всего, необходимо отобрать те звукопоглощающие материалы и конструкции, которые будут намечены к использованию в проектируемой студии. Эта задача является наиболее сложной и ответственной, так как при этом приходится учитывать одновременно целый ряд факторов: стоимость материалов, их внешний вид, возможность поставки, требования пожарной безопасности и т.п. На этой же предварительной стадии следует решить вопрос и о способе монтажа материалов на поверхностях студии. Дело в том, что значения КЗП материалов зависят от способа их крепления. Например, наличие воздушного относа между задней поверхностью звукопоглощающей плитки и плоскостью стены (при креплении плитки по несущему каркасу) приводит к увеличению КЗП в низкочастотной области. Игнорирование этого факта при акустическом проектировании может привести к существенному «переглушению» студии на низких частотах, причем исправление этого дефекта в построенной студии обычно весьма сложно и требует больших дополнительных затрат. Помимо этого, следует принимать во внимание и ряд дополнительных чисто акустических требований. В частности, для музыкальных студий оказывается полезным размещать на потолке достаточно большое количество звукорассеивающих конструкций, в дикторских студиях следует избегать поступления первых интенсивных отражений в область размещения дикторского стола. Некоторые эти вопросы ниже рассмотрены подробнее.
    После решения указанных проблем приступают к непосредственным расчетам. Суть их сводится к тому, чтобы путем варьирования площадей занимаемых выбранными материалами подобрать такой общий фонд звукопоглощения студии, при котором в ней будет обеспечен оптимум реверберации. В настоящее время подобные расчеты повсеместно производятся на ЭВМ по специально разработанным программам, позволяющим найти оптимальное решение. При расчете, как показывает опыт, обычно необходимо учитывать некоторые поправочные параметры, к которым относится так называемый коэффициент добавочного звукопоглощения. Этот коэффициент учитывает добавочное поглощение, обусловленное наличием осветительной арматуры, щелей и ряда других факторов. Его значения были определены на основании исследования большого числа студий разного назначения. После завершения расчетов приступают к заключительному этапу, на котором подготавливаются необходимые чертежи для проведения строительных работ.
    Указанные выше основные принципы защиты помещений от проникающих звуковых помех в целом являются общими для всех типов студий и аппаратных. По иному обстоит дело с проектированием акустических облицовок на внутренних поверхностях, требования к которым для различных типов студий существенно отличаются. Ниже кратко будут рассмотрены эти требования дифференцированно по отдельным типам помещений.
    Для указанных выше ТВ студий устанавливаются следующие значения оптимума реверберации: студии С-450-600 — Т = 0,8-1,1 с; С-300 — Т = 0,75-0,85 с; С-150 — Т = 0.6-0,7 с и С-60-80 Т = 0,3-0,4 с. Форма частотной характеристики времени реверберации должна быть строго горизонтальной. При этом в ТВ студиях площадью 150 кв. м и более является допустимым (но не обязательным) спад времени реверберации в области низких частот (в октавной полосе 125Гц) до 20-25% относительно указанных выше средних значений.
    Из всех типов студийных помещений проектирование ТВ студий является наиболее простым. Это связано с тем, что в них достаточно разместить на стенах и потолке плоские звукопоглощающие облицовки, обеспечивающие оптимум реверберации. Однако их размещение должно быть выбрано обоснованно и разумно. Часто встречается ошибка, при которой все поверхности стен и потолка облицовываются одинаковым звукопоглощающим материалом. При таком подходе качество звучания в студии оказывается неудовлетвори-тельным. Связано это с тем, что при этом невозможно обеспечить во всем частотном диапазоне оптимум реверберации...
    Далее.....

 

Информация

 

Усилитель ламповый XD850MKIII

XD850MKIII

Акустическая система Music Angel One

Music Angel One

Усилитель ламповый XD800MKIII

XD800MKIIIIII

Усилитель ламповый MINIP1

MINIP1