Усилители Music Angel

    XD500MKIII
    XD800MKIII
    XD845MKIII
    XD845LE
    XD850MKIII
    XD8502AIII
    XD900MKIII
    T24 фонокорректор

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Усилители ARIA

    MINI 6
    MINI 5.1
    MINIP1
    MINIL3
    MINIP14

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Усилители LACONIC

    AZUR H2
    HA-02
    HA-03B
    HA-03B2
    HA-03M
    Lunch Box Pro

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустические системы

    Music Angel One
    Music Angel 2.5
    Music Angel TK-10
    DIVA 5.2

Акустическая система Music Angel One: 20 - 100 Вт, 38 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 - 200 Вт, 20 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 - 250 Вт, 45 Гц - 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 - 150 Вт, 36 Гц - 20 кГц, 90 дБ/Вт/м

Комплектующие

    Лампы
    Кабели

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Это интересно

Одна из разновидностей фазоинверсной АС — АС с ПИ. Она отличается от закрытой АС наличием дополнительной подвижной системы (в простейшем случае — подвижной системы низкочастотной головки без катушки и магнитной цепи) (рис. 61). Эта система пассивная и возбуждается колебаниями воздуха в закрытом корпусе при работе головки, излучая звуковые волны в области низких частот. В результате суммарное звуковое давление, развиваемое АС с ПИ на низких частотах, может быть значительно больше, чем закрытой АС равного объема и с той же низкочастотной головкой. Конструкция АС с ПИ -приведена на рис. 62.
    Головка прямого излечения (а) и пассивный излучатель (б)
    Конструкция АС с ПИ: 1 — пассивный излучатель; 2 — низкочастотная головка- 3—высокочастотная головка
    По принципу действия АС с ПИ сходна с АС с ФИ. Единственное различие состоит в том, что масса воздуха в трубе фазоинвертора заменена массой подвижной системы пассивного излучателя. Изменяя массу подвижной системы пассивного излучателя, можно значительно проще изменять его резонансную частоту по сравнению с фазоинвертором, где для этого приходилось менять размеры отверстия, диаметр или длину трубы.
    Ранее отмечалось, что АС с ФИ имеет ряд конструктивных ограничений. Так, при настройке фазоинвертора на низкую резонансную частоту (30—50 Гц) масса воздуха в трубе должна быть достаточна большой, что обычно обеспечивается либо увеличением ее длины, либо уменьшением диаметра (при неизменном внутреннем объеме). В первом случае может получиться, что труба конструктивно не поместится в оформление, либо ее длина превысит критическое значение λн/12. Во втором случае могут резко возрасти акустические потери на трение в трубе, что снизит эффективность АС с ФИ в области низких частот.
    Акустические системы с ПИ свободны от этих недостатков. Действительно, как на площадь пассивного излучателя, которая обычно выбирается равной площади диффузора головки и даже больше, так и на его массу не накладывается никаких ограничений. Поэтому при расчете этих систем можно не опасаться тех трудностей, которые возникают при применении АС с ФИ. Настройка пассивного излучателя практически на любую частоту резонанса fп его массой т и гибкостью объема воздуха Sв не вызывает затруднений. Это видно из следующего выражения:
    Следует, однако, отметить, что собственно пассивный излучатель характеризуется не только массой, но также и гибкостью подвеса s, так что АС с ПИ является более сложной колебательной системой, чем АС с ФИ, что, естественно, усложняет ее расчет.
    Принцип использования пассивных излучателей для повышения уровня звукового давления известен давно, однако практические конструкции АС с ПИ стали появляться лишь в 70-х годах. Можно отметить конструкции АС с ПИ, выпускаемые фирмами Kenwood (Япония), Selection (Англия), Ohm (США). Как следует из табл. 1, в настоящее время выпуск этих систем приближается к 10% в развитых странах. В нашей стране также начали выпускать такие АС.
    При расчете АС с ПИ так же как в АС с ФИ целесообразно находить не абсолютное значение звукового давления, а его значение по сравнению со звуковым давлением соответствующей закрытой системы. Это позволяет определить тот выигрыш, который обеспечивает АС с ПИ по сравнению с закрытой системой.
    Тогда по аналогии с (40) имеем
    где rsп= rs1 +rs2.
    Здесь введены обозначения, аналогичные примененным при рассмотрении АС с ФИ.
    В основу расчета АС с ПИ по выражению (46) может быть положена схема акустического аналога АС с ПИ, изображенная на рис. 63. Здесь r0 — активные потери в головке, r — активные потери в пассивном излучателе.
    Рис. 63. Упрощенная схема акустического аналога АС с ПИ
    Поскольку АС с ПИ так же, как и АС с ФИ может быть рассмотрена как система из двух излучателей, один из которых — собственно низкочастотная головка, а другой — пассивный излучатель, то расчет выражения √rsп/rs0 для пассивного излучателя ничем не отличается от его расчета для фазоинвертора. Единственное отличие состоит в том, что площадь пассивного излучателя может быть выбрана значительно большей, чем площадь отверстия фазоинвертора. Расчеты авторов показали, что для АС с ПИ значение √rsп/rs0 может составлять от 2,0 до 2,35 и оно частотно-малозависимо.
    Выражение для р0 закрытого оформления подставляем в (47) в виде (42).
    Вывод выражения для k = xп/x0 приведен в приложении 5. Здесь приводится лишь окончательное выражение:
    Выражение для звукового давления АС с ПИ (рп) с учетом (47), (42) и (48) может быть записано как
    где А — частотно-независимый множитель.
    Как видно из (49), поведение АС с ПИ может быть описано пятью параметрами: п, l, р, Q, Qп. Здесь кроме параметров, описывающих АС с ФИ, появился параметр p=sв/s, характеризующий относительную упругость (подвеса) пассивного излучателя, т. е. отношение упругости воздуха внутри оформления к упругости подвеса пассивного излучателя. Добротность фазоинвертора Qп заменяется здесь добротностью пассивного излучателя, равной Qп = ωпm/rп.
    Исследования авторов показали, что число переменных можно сократить до четырех, так как значение Qп может быть выбрано фиксированным и в диапазоне Qп>5 практически не влияет на полученные результаты.
    Таким образом, характеристики АС с ПИ зависят от добротности головки, объема оформления, настройки пассивного излучателя и упругости его подвеса, при условии поддержания добротности пассивного излучателя Qп>5.
    Выражение (49) довольно громоздко. Поэтому на рис. 64—66 приводятся наборы графических зависимостей (семейства частотных характеристик), построенных по выражению (48). Каждый рисунок выполнен для фиксированных значений Q, Qп, n для семейства кривых с различными значениями настройки пассивного излучателя и относительными упругостями его подвеса.
    Семейство частотных характеристик АС с ПИ для Qв=0,2, n=0,5 (а) и Qв=0,2, n=1,0 (б)
    Здесь и на рис. 65, 66 нанесены следующие кривые: - - - - - закрытое оформление; - · - · - p=1, l=2; —×××—×××— p=1, l=1; —×××—××× p=1, l=0,5; —×—×— p=1, l=3; ————— р=2, l=2; О—О—О— р=3, l=3; ОО—ОО—ОО— р=3 l=2
    Семейство частотных характеристик АС с ПИ для Q0 = 0,4, n=0,5 (а) и Q0=0,4, n=l,0 (б)
    Семейство частотных характеристик АС с ПИ для Q0 = 0,6, n=0,5 (а) и Q0=O,6, n=1,0 (б)
    Как видно из приведенных кривых, обычно пассивный излучатель настраивается на частоту в 2—3 раза ниже резонансной частоты головки в отличие от настройки фазоинвертора, резонансная частота которого может лишь незначительно отличаться от резонансной частоты головки. Что касается добротности используемых головок, то их значение составляет 0,2—0,8 и связано с объемом оформления. Чем меньше объем оформлений, тем меньшую добротность головки необходимо выбирать.
    Далее...

 
 

Бытовые акустические системы

 

ДРУГИЕ ВИДЫ АКУСТИЧЕСКОГО ОФОРМЛЕНИЯ ГОЛОВОК

В предыдущих главах рассматривались наиболее часто применяемые виды АС. Однако существует еще целый ряд видов систем, применяемых значительно реже. Здесь будут рассмотрены: акустический лабиринт, рупорная акустическая система, электростатическая акустическая система, а также акустическая система с электромеханической обратной связью (ЭМОС).

Для того чтобы избежать акустического «короткого замыкания», можно использовать акустическое оформление с лабиринтом. Один из вариантов конструкции этого вида оформления фирме Akai (Япония) приведен на рис. 68. Акустическая система состоит из корпуса, на передней стороне которого укреплена головка 1. Задняя сторона диффузора головки работает на образованный рядом перегородок 2 зигзагообразный звукопровод — лабиринт. Второй конец лабиринта заканчивается выходным отверстием 3 на одной из стенок корпуса. Поперечное сечение лабиринта— обычно прямоугольное или круглое, площадь которого равна эффективной площади диффузора головки Sэфф. Выпрямленная длина лабиринта должна быть равна 1/2λ на нижней граничной частоте воспроизводимого диапазона частот. Благодаря этому излучение из выходного отверстия лабиринта будет совладать по фазе с излучением передней стороной диффузора головки. Так, если нижняя граничная частота воспроизводимого диапазона 30 Гц (длины волны 11,4 м), то выпрямленная длина трубы лабиринта должна быть 5,7 м. Конечно, если лабиринт будет иметь больше колен, конструктивная глубина корпуса АС будет соответственно меньше. Для уменьшения влияния на частотную характеристику системы частных (высших) резонансов трубы ее стены желательно покрывать звукопоглощающим материалом, например, слабо набитыми и простеганными ватными матами. Однако конструкции АС с лабиринтом тем не менее довольно громоздки, вследствие чего редко применяются, несмотря на то, что от них можно получить хорошие результаты

Лабиринт фирмы Akai в разрезе

Рис. 68. Лабиринт фирмы Akai в разрезе

Внешний вид и разрез радиального комнатного лабиринта

Рис. 69. Внешний вид (а) и разрез (б) радиального комнатного лабиринта

 

На рис. 69 показан разрез другой конструкции с лабиринтом. Здесь над головкой 3 укреплен рассеиватель 1 для излучения звука в горизонтальной плоскости. Звук излучается через отверстия 2 и 4.

Электродинамическая головка может быть нагружена на рупор. Известны две модификации устройства рупорных головок. В первой из них, так называемой широкогорлой, горло рупора непосредственно примыкает к диффузору головки. За счет того, что устье имеет диаметр больше диаметра диффузора головки, направленность такого рупора острее направленности головки. Поэтому звуковая энергия концентрируется на оси рупора и звуковое давление здесь возрастает.

Во второй модификации (узкогорлой) рупор сочленяется с диафрагмой (диффузором) головки через предрупорную камеру, играющую роль, аналогичную роли электрического согласующего трансформатора. Здесь согласуются механические сопротивления подвижной системы головки и горла рупора, что увеличивает нагрузку на диафрагму и как бы повышает ее сопротивление излучения, благодаря чему сильно повышается коэффициент полезного действия. Таким образом, это дает возможность получить большое звуковое давление.

Имеется много различных типов рупоров, но практически наиболее часто применяют в бытовой аппаратуре экспоненциальный рупор, сечение которого изменяется по закону

(50)

где S0 — площадь входного отверстия рупора, β — показатель экспоненты.

На рис. 70 приведены различные профили рупоров.

Как можно вывести из выражения (50), поперечное сечение такого рупора увеличивается на одинаковое процентное значение через каждую единицу его осевой длины. Значение этого процентного приращения определяет нижнюю граничную частоту рупора. На рис. 71 представлена зависимость процентного приращения поперечного сечения на 1 см осевой длины от нижней граничной частоты. Так, например, чтобы обеспечить воспроизведение рупором нижней граничной частоты 60 Гц, площадь поперечного сечения должна увеличиваться на 2% через каждый 1 см его осевой длины. Эту зависимость можно представить и в виде следующего выражения:

где k — приращение площади поперечного сечения, %.

Для низких частот (до 500 Гц) это выражение упрощается и принимает вид fгр.н = 27k.

Если рупор делается квадратного или круглого сечения, то сторона квадрата или диаметр круга должны увеличиваться на каждый 1 см длины рупора на √k процентов. Если же его делают прямоугольного сечения с постоянной высотой, то ширина сечения рупора должна увеличиваться на k процентов на каждый 1 см его длины.

Профили применяемых рупоров

Рис. 70. Профили применяемых рупоров: 1 — конический;
2 — экспоненциальный; 3 — гиперэкспоненциальный

Зависимость процентного приращения площади поперечного сечения рупора

Рис. 71. Зависимость процентного приращения площади поперечного сечения
рупора на 1 см его осевой длины от нижней граничной частоты

Однако выдержать необходимое процентное увеличение сечения еще недостаточно для хорошего воспроизведения низких частот. Нужно иметь достаточную площадь его выходного отверстия — устья. Его диаметр (или диаметр равновеликого круга) должен быть

Так, для нижней граничной частоты 60 Гц диаметр устья составит около 1,8 м. Для более низких граничных частот размеры устья будут еще больше. Кроме того, рупорная головка, хорошо воспроизводя низшие частоты (выше /гр.н), недостаточно хорошо воспроизводит широкий частотный диапазон. Учитывая это, целесообразно иметь две рупорные головки: одну для воспроизведения >низких, а другую — для высоких частот. На рис. 72 представлен внешний вид и сечение такой АС с двумя рупорными головками и фазоинвертором для воспроизведения частот ниже fгр.н рупора.

Внешний вид и разрез акустической системы с двумя рупорными головками и фазоинвертором

Рис. 72. Внешний вид (а) и разрез (б) акустической системы
с двумя рупорными головками и фазоинвертором

Применение низкочастотных рупорных оформлений в жилых помещениях ограничено размерами помещения. Однако, если такая возможность имеется, тo расчет рупора следует начинать, задавшись площадью устья по выбранной нижней граничной частоте, уменьшая сечение на k процентов на каждый 1 см осевой длины до тех пор, пока не достигают площади сечения, равной площади диффузора головки. При этом, для того чтобы сопрячь головку с широкогорлым рупором, рупор должен иметь сечение той же формы, т. е. круглое или эллиптическое. Для узкогорлых рупоров идентичность формы сечения и диафрагмы головки необязательна, так как горло и диафрагма сочленяются через предрупорную камеру. Отметим, что высота камеры должна быть существенно больше амплитуды колебаний подвижной системы головки во избежание возникновения сильных нелинейных искажений из-за несимметричности деформации объема воздуха в камере. Однако слишком большая высота предрупорной камеры ухудшает воспроизведение высоких частот.

Иногда, чтобы уменьшить габаритные размеры АС, применяют свернутые рупоры, различные конструкции которых показаны на рис. 73. Свернутые рупоры рассчитывают практически так же, как и обычные. При расчете профиля необходимо следить за тем, чтобы в местах перехода (сгиба колен) не было резких изменений сечений, вызывающих нерегулярности в частотной характеристике.

Конструкции свернутых рупоров

Рис. 73. Конструкции свернутых рупоров

Ранее описывалось устройство электростатической головки и отмечалось, что такие головки используют преимущественно только как высокочастотные из-за целого ряда сложностей, возникающих при конструировании низкочастотных электростатических головок. Здесь описывается конструкция и устройство первой отечественной широкополосной головки (системы) ГСШ-1. Устройство (рис. 74) выполнено в виде плоской конструкции и состоит из шести односекционных низкочастотных панелей (13, 79) и одной трехсекционной — средних и высоких частот, причем секции 4, и воспроизводят только средние частоты, а секция 5 — средние и высокие. Чувствительность системы зависит от площади поверхности головки и от площади отверстий в электродах. Зазор мембрана-электрод на низкочастотных панелях достигает 2 мм. Для мембраны применяется алюминированная пленка из полиэтилентерефталата толщиной 6 мкм. Панели излучателей монтируются на деревянную раму, в нижней части которой устанавливаются элементы блока питания.

Изображение широкополосной электростатической акустической системы ГСШ-1

Рис. 74. Изображение широкополосной электростатической акустической системы ГСШ-1

Частотная характеристика ГСШ-1

Рис. 75. Частотная характеристика ГСШ-1

 

На рис. 75 представлена частотная характеристика этой электростатической системы. Ее основные технические параметры следующие:

Мощность.......................................................................................... 20 Вт

Номинальное электрическое сопротивление на частоте 1000 Гц.......... 8 Ом

Номинальный диапазон частот........................................................... 40 Гц — 30 кГц

Среднее стандартное звуковое давление........................................... 0,25 Па

Неравномерность частотной характеристики ...................................... 8 дБ

Суммарный коэффициент гармоник искажений .................................. 1%

Габаритные размеры.......................................................................... 87×69×60 см3

Принцип использования электромеханической обратной связи (ЭМОС) для улучшения частотных характеристик АС известен давно. Однако .так же, как и к АС ПИ, практический интерес к этим системам пробудился всего несколько лет назад (конструкции фирм Philips, Matsushita, Голландия, Япония).

В АС с ЭМОС используется отрицательная обратная связь от колебаний подвижной системы головки, ускорение которой пропорционально звуковому давлению системы. При этом э. д. с, создаваемая за счет колебаний подвижной системы (рис. 76), подается на вход усилителя в противофазе со входным напряжением. С помощью ЭМОС возможно решить две задачи: расширить воспроизводимый диапазон частот в более низкочастотную область и уменьшить коэффициент гармоник в области низких частот.

На рис. 77 приведены типичные частотные характеристики АС без ЭМОС (1) и с ЭМОС (2). Как видно, частотная характеристика АС расширяется в сторону более низких частот (в данном примере со 100 до 32 Гц). Однако введение ЭМОС понижает уровень звукового давления (в данном примере на 10 дБ). Поэтому, чтобы получить прежний уровень звукового давления, необходимо увеличить мощность оконечного усилителя.

На практике применяют комбинированную ЭМОС по колебательной скорости и колебательному ускорению, которая может быть получена двумя способами. Первый способ прост и не требует каких-либо изменений в конструкции головки. Сигнал для получения ЭМОС снимается непосредственно со звуковой катушки головки. Для выделения этого сигнала применяются мостовые схемы. На выходе моста создается напряжение, пропорциональное скорости подвижной системы головки, которое затем дифференцируется, чтобы получить сигнал, пропорциональный ускорению и оба напряжения подаются на вход усилителя. Недостаток этого способа — трудность балансировки моста в достаточно широком диапазоне частот.

Схема выполнения ЭМОС

Рис. 76. Схема выполнения ЭМОС

Частотные характеристики АС с ЭМОС

Рис. 77. Частотные характеристики АС с ЭМОС

Другой способ требует применения дополнительного датчика измерителя ускорения — акселерометра. Обычно акселерометр представляет собой пьезокерамический диск диаметром 8—12 мм и толщиной 0,5—1,0 мм. Обе его поверхности металлизированы и каждая имеет отвод. На наружную поверхность прикреплен (наклеен) грузик массой в несколько граммов. Датчик закрывается защитным кожухом. С помощью датчика снимается сигнал, пропорциональный ускорению подвижной системы головки, т. е. пропорциональный звуковому давлению. Этот сигнал после коррекции подается на вход усилителя.

Такой способ получения ЭМОС более сложен, но способен обеспечить достаточное высокие технические характеристики АС. Примером АС с ЭМОС является электрофон 22RH 532 фирмы Philips в низкочастотной головке которого применена ЭМОС. Резонансная частота низкочастотной головки без ЭМОС равна 80 Гц. Объем закрытого оформления составляет 15 л. Частотная характеристика этой АС имеет неравномерность 5 дБ и простирается от 30 Гц.

 

В.К. Иофе, М.В. Лизунков     

 

Часть [1]  [2]  [3]  [4]  [5]  [5]  [7]  [8]  [9]  [10]  [11]  [12]  [13]


Статьи

Ламповый звук
Тайны лампового звука
Волшебство лампового звука [1] [2]
Когда лампа лучше, чем транзистор [1] [2]
Почему вакуумный триод звучит музыкально
Схемотехника ламповых усилителей
Лампы или транзисторы? Лампы!
Однотактный ламповый усилитель для начинающих
Двухтактные ламповые усилители
Оконечный пушпульный усилитель - схема Уильямсона-Хафлера-Кероеса
Рекомендации по повторению реплики схемы Уильямсона-Хафлера-Кероеса
Однотактный усилитель с непосредственной связью. Схема Loftin-White [1] [2]
Трехламповый усилитель Губина
Однотактник на 300В
Усилители низкой частоты
Расчет каскада с нагрузкой в аноде
Однотактный усилитель на лампе 807 [1] [2]
Циклотрон. Мощный усилитель с выходными лампами ГУ-50
SE на RB300
Однотактный усилитель мощности на 300В. Модель WE91 для 90-х годов [1] [2]
Как улучшить звучание HI-FI системы [1] [2] [3] [4] [5] [6]
Лампы и звук: назад, в будущее [1] [2] [3] [4] [5]
Однотактный ламповый ... [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Апгрейд усилителя XD845MKIII [1] [2]
"Усилитель" для наушников на SRPP [1] [2] [3] [4] [5] [6]
Ламповый High-End [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [...]
Обзор журнала Glass Audio за 1998 год [1] [2]
Обзор журнала Glass Audio за 1999 год
Корректор для винила
Компенсированные регуляторы громкости
Усилитель НЧ
Даешь ONGAKU!
Tubesaurus Rex
Усилитель НЧ с комбинированной обратной связью
Прибор для измерения напряжения накала высоковольтных кенотронов
George Ohm живет в Харькове
Ревизия однотактного усилителя с межкаскадным трансформатором
Усилитель мощности НЧ с высоким КПД
Двухканальный усилитель НЧ
Усилитель НЧ с клавишным переключателем
Радиотрансляционные установки ТУ-50 и ТУ-100
Портативный проигрыватель
Усилитель НЧ
Усилитель без выходного трансформатора
Усилители без выходного трансформатора
Лампово-полупроводниковый УМЗЧ
Акустика
Бытовые акустические системы [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Там, где живут басы [1] [2] [3] [4] [5] [6]
The Onken Enclosure
Категории слухового восприятия [1] [2]
Три взгляда на акустику помещений [1] [2]
Акустика в которой мы живем [1] [2]
Акустика офисов
Мифы звукоизоляции
Акустика отделочных материалов
Акустический агрегат с объемным звучанием
Акустические свойства домашней мебели
Акустические линзы для громкоговорителей
Акустические измерения в практике радиолюбителя
Акустический фазоинвертор
Акустика студий [1] [2]
Полезные советы разработчиков Hi-End
Триод против пентода. Что выбрать? [1] [2]
SINGLE-ENDED VS PUSH-PULL [1] [2] [3] [4] [5] [6] [7]
Одноламповые усилители низкой частоты
Как пользоваться характеристиками электронных ламп
Многоламповые усилители НЧ на импортных лампах
Контактно-резисторный коммутатор входов
Как проверять аппаратуру в салоне
Что лучше: 4 или 8 Ом акустика?
Выходной трансформатор для однотактника. Быть или не быть линейным
Простая и быстрая проверка трансформаторов
Десять способов усовершенствовать вашу аудиокомнату
Испытатель ламп
Понижение уровня фона в усилителях
Evolution
Пять правил рационального питания
Трансформаторы в однотактных усилителях
Выходные трансформаторы
Измерение характеристик выходного трансформатора [1] [2]
Однотактный «Magnum»
Какая лампа нам нужна
Какая лампа нам нужна и будет ли она?
Улучшенная конфигурация листов трансформаторной стали
Должен ли УМЗЧ иметь малое выходное сопротивление? [1] [2]
Звук: интересные наблюдения
Вся правда об акустике ProAc
Немного теории лампового звука
О заметности искажений
История лампы 300B
Краткая история возникновения Hi-Fi
Возможен ли "виниловый ренессанс?" [1] [2] [3]
Hi-End: Мифы и реальность [1] [2]
Как не заблудиться в кабельных джунглях?
Побалуйте свои уши! [1] [2]
Ограничение сигнала усилителем – можно ли работать в клиппинге?
"Хай-Энд" умер, да здравствует "Хай-Энд"! [1] [2]
Блестящие звукозаписи [1] [2] [3]
Семь слов об ошибках аудиоэкспертизы
Частотные, нелинейные и фазовые искажения
Внешние факторы, влияющие на восприятие звука
Многоканальный окружающий звук [1] [2] [3] [4]
Магнитная запись: мифы и реальность
Теория схемотехники и звукотехники
Для начинающих. Как работает усилитель [1] [2]
Принципы схемотехники электронных ламп [1] [2] [3] [4] [5] [6] [7] [8]
Хрестоматия радиолюбителя, 1963г. [1] [2] [3] [4] [5]
Конструктивный расчет входных и выходных трансформаторов [1] [2]
Как работают звуковые трансформаторы
Элементарная теория схем с обратной связью [1] [2] [3]
Теория звукотехники
Двухтактно-параллельный усилитель НЧ
Особенности стандартов, описывающих мощность в звукотехнике
Отрицательная обратная связь в усилителях
Классы усилителей мощности
Элементарная теория триода [1] [2] [3] [4] [5] [6] [7] [8] [9]
Как работает лучевой тетрод
О мощности, ваттах, децибелах... [1] [2]
Теория звука [1] [2] [3] [4]
Звук и цифровые технологии [1] [2] [3] [4] [5] [6]
Проектирование абсолютно устойчивых усилителей [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Звуковые форматы
Описание стандарта MP3
Правильная мощность
Начинающим. Радиолампа
Высококачественный усилитель низкой частоты
Объемный звук [1] [2] [3]
Парадоксы электрона
Вибратор к гитаре
Ламповый авометр
Старая и популярная 12АХ7/ЕСС83
Принцип устройства и работы электро-вакуумных приборов
Двухэлектродные лампы
Трехэлектродные лампы
Рабочий режим триода
Многоэлектродные и специальные лампы
Электронно-лучевые трубки
Газоразрядные и индикаторные приборы
Фотоэлектронные приборы
Собственные шумы электронных ламп
Особенности работы электронных ламп на СВЧ
Специальные электронные приборы для СВЧ
Надежность и испытание электровакуумных приборов
Основы схемотехники ламповых усилителей
Искажения в усилителях, их измерение, меры по снижению искажений
Основные сведения о радиокомпонентах
Источники питания
Каскады усиления мощности
Каскады предварительного усиления
Широкополосные усилители
Усилительный каскад с катодной нагрузкой [1] [2]
Life in Vacuum. EL34
Life in Vacuum. 6H8C, 6H9C
Life in Vacuum. SV572 SV6550 6C5C 6C3П/6C4П
Двойной триод 6Н3П
Пентод 6Ж5П
6П42С / 6П45С
Лучевой тетрод 6П1П
Пентод 6П14П в оконечном каскаде
Двойной триод 6Н14П
Кенотрон 1Ц11П
Демпферный диод 6Ц10П
Что и как мы слышим
 
 
 

Найти на сайте

 

Информация

Лазерный гравер

Для выращивания растений созданы облучательные установки и описаны особенности их расчета

 

Это интересно

Для получения требуемых результатов от акустических систем необходимо не только правильно рассчитать их, но и тщательно изготовить. Здесь даются рекомендации, которые позволят избежать наиболее часто встречающихся ошибок
    В любом акустическом оформлении прежде всего следует избегать каких-либо щелей или отверстий (за исключением щелей или отверстий в задней стенке у открытого оформления). Особенно опасны они на передней панели, поскольку в этом случае имеет место акустическое «короткое замыкание» и оформление практически не работает, что приводит к резкому ухудшению воспроизведения низких частот. Поэтому, в частности, рекомендуется устанавливать головки на передней панели с уплотнением в виде кольцевой прокладки из микропористой или губчатой резины, резиновой трубки, пенопласта ПХВЭ и т. д. Этим достигается и другая цель — снижение уровня вибраций панели при работе головки. Уплотнением могут служить и картонные дужки (сектора) у головок малых мощностей, которые расположены на диффузородержателе. Но тогда необходимо уплотнять щели между ними.
    Головки обычно крепят, к оформлению с помощью винтов, шурупов или специальных шпилек. Необходимо следить, чтобы головки притягивались к корпусу не очень сильно, так как эго может покоробить диффузородержатель и тем самым вызвать перекос подвижной системы. Задняя сторона диффузора головки не должна быть закрыта деталями (при конструировании открытого акустического оформления магнитофонов, радиоприемников и т. д.). Можно рекомендовать, чтобы детали АС не занимали более 25— 30% внутреннего объема оформления. Несоблюдение этого требования приводит к снижению звукового давления, развиваемого АС. Материал оформления должен обеспечивать жесткость стенок, особенно передней. Наиболее подходящим материалом являются деревянные доски, фанера, древесноволокнистые и древесностружечные плиты. При этом, чем больше размер корпуса, больше мощность головки, тем более толстый материал оформления должен быть применен. Так, для высококачественных АС объемом 50—100 л следует делать стенки толщиной не менее 20 мм, особенно переднюю панель оформления, к которой крепятся головки.
    Акустическое оформление рассчитывают, исходя из габаритных размеров низкочастотных или широкополосных головок. Высокочастотные и среднечастотные головки могут быть помещены в общее акустическое оформление с низкочастотными, но отделены от них акустически (выделены в отдельный отсек или закрыты сзади специальными колпаками). Диаметр отверстия для головки должен быть равен полному диаметру диффузора, включая и гофр, чтобы исключить возможность касания гофра стенок оформления при колебаниях подвижной системы головки. Диффузор головки необходимо защитить от возможного внешнего механического повреждения, прикрыв отверстие под декоративной тканью металлической или пластмассовой сеткой со стороной ячейки 5—8 мм. Облицовочные и декоративные элементы часто оказывают отрицательное влияние на частотную характеристику головки. Плотная ткань ухудшает звуковоспроизведение в области средних и высоких частот. Значительное влияние может оказать декоративный материал, закрывающий отверстие фазоинвертора. Толстые решетки и жалюзи могут иногда вызывать резонансные явления, и в частотной характеристике головки появятся дополнительные пики и провалы.
    Как уже отмечалось, среднечастотная и высокочастотная головки при установке в общем оформлении с низкочастотным должны быть закрыты сзади кожухом из фанеры, пластмассы или металла. Такой кожух устраняет воздействие на высокочастотную головку излучения задней стороны диффузора низкочастотной головки. Кожух должен плотно прилегать к панели. Щели в самом кожухе и между ними и панелью недопустимы. Можно для заделки щелей проложить полосы пористой резины или поролона. При изготовлении АС с ФИ, кроме того, необходимо контролировать, чтобы труба фазоинвертора плотно входила в переднюю панель оформления, а имеющиеся щели были заделаны.
    При самостоятельном изготовлении корпуса оформления трудности выполнения чистого шипового соединения панелей, особенно из древесностружечного материала, можно обойти, связывая элементы оформления при помощи деревянных брусков или металлических уголков (рис. 78). Уголки предварительно приклеивают к стенкам оформления.
    Способы соединений стенок корпусов АС
    Самой трудной и ответственной является отделка внешних поверхностей оформления. Наиболее красиво фанерование этих поверхностей ценными породами дерева с последующей полировкой поверхностей. Однако такая работа требует высокой квалификации. Поэтому для упрощения рекомендуется использовать фанерованные древесноволокнистые плиты. Проще же всего покрыть поверхности оформления самоклеящейся пленкой с рисунком дерева ценных пород.
    Акустическое оформление должно быть изготовлено так, чтобы оно по возможности не вибрировало при работе головки. При чрезмерной вибрации корпуса снижается звуковое давление от системы и увеличивается суммарный коэффициент гармоник в области низких частот. Кроме того, вибрации порождают призвуки, искажающие основной сигнал. Для борьбы с вибрациями рекомендуется устанавливать низкочастотную головку на мягкую кольцевую прокладку. Это позволяет снизить уровень вибрации корпуса в области низких частот на 15—20 дБ. Однако при этом необходимо следить, чтобы крепящие болты не соприкасались непосредственно c диффузородержателем. Для этого под головки болтов и гаек нужно подложить шайбы из мягкой резины.
    Одним из основных способов борьбы с вибрацией корпусов является увеличение толщины их стенок. Наибольшая разница в уровнях вибрации наблюдается при изменении толщины стенок от 4 до 8 мм. Средний уровень ускорений на низких частотах при этом уменьшается на 40—45 дБ.
    Далее...

 

Усилитель ламповый XD850MKIII

XD850MKIII

Акустическая система Music Angel One

Music Angel One

Усилитель ламповый XD800MKIII

XD800MKIIIIII

Усилитель ламповый MINIP1

MINIP1