Усилители Music Angel

    XD500MKIII
    XD800MKIII
    XD845MKIII
    XD845LE
    XD850MKIII
    XD8502AIII
    XD900MKIII
    T24 фонокорректор

Ламповый усилитель XD500MKIII: EL34, 2х50 Вт Ламповый усилитель XD800MKIII: KT88, 2х65 Вт Ламповый усилитель XD845MKIII: 845, 2х20 Вт Ламповый усилитель XD850MKIII: 300B, 2х9 Вт Ламповый усилитель XD8502AIII: 300B, 2х9 Вт Предварительный ламповый усилитель XD900MKIII: 12AU7, 12AX7

Усилители ARIA

    MINI 6
    MINI 5.1
    MINIP1
    MINIL3
    MINIP14

Ламповый усилитель MINI 6: KT88, 2х60 Вт Ламповый усилитель MINIP1: 6AQ5, 2х10 Вт Ламповый усилитель MINIL3: EL34, 2х35 Вт Ламповый усилитель MINIP14: 6P14, 2х10 Вт

Усилители LACONIC

    AZUR H2
    HA-02
    HA-03B
    HA-03B2
    HA-03M
    Lunch Box Pro

Ламповые усилители LACONIC HA-02,03B/B2/M: 6N6P, 2х1,2 Вт на 300 Ом

Акустические системы

    Music Angel One
    Music Angel 2.5
    Music Angel TK-10
    DIVA 5.2

Акустическая система Music Angel One: 20 - 100 Вт, 38 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel 2.5: 20 - 200 Вт, 20 Гц - 30 кГц, 86 Дб/Вт/м Акустическая система Music Angel TK-10: 10 - 250 Вт, 45 Гц - 22 кГц, 8 Ом, 97 дБ/Вт/м Акустическая система DIVA 5.2: 10 - 150 Вт, 36 Гц - 20 кГц, 90 дБ/Вт/м

Комплектующие

    Лампы
    Кабели

КТ 88: Filament Voltage 6.3 V Filament Current 1.6 A Plate Voltage (max) 800 V Plate Current (max) 230 mA Plate Dissipation (max) 40 W 845: D.C. Plate Voltage 1250 D.C. Grid Voltage -98 Peak A.F. Grid Voltage 93 D.C. Plate Current (ma.) 95 Power Output (watts) 15 21 300B: Filament Voltage 5 V Filament Current 1.2 A Plate Voltage (max) 450 V Plate Current (max) 100 mA Plate Dissipation (max) 40 W

Это интересно

Как мы слышим? Психоакустика.
    Слуховая система человека – сложный и вместе с тем очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим.
    В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо. К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу (его длина составляет около 3 см, а диаметр - около 0.5) и попадает в среднее ухо, где ударяется о барабанную перепонку, представляющую собой тонкою полупрозрачную мембрану. Барабанная перепонка преобразует звуковую волну в вибрации (усиливая эффект от слабой звуковой волны и ослабляя от сильной). Эти вибрации передаются по присоединенным к барабанной перепонке косточкам - молоточку, наковальне и стремечку – во внутреннее ухо, представляющее собой завитую трубку с жидкостью диаметром около 0.2 мм и длинной около 4 см. Эта трубка называется улиткой. Внутри улитки находится еще одна мембрана, называемая базилярной, которая напоминает струну длиной 32 мм, вдоль которой располагаются чувствительные клетки (более 20 тысяч волокон). Толщина струны в начале улитки и у ее вершины различна. В результате такого строения мембрана резонирует разными своими частями в ответ на звуковые колебания разной высоты. Так, высокочастотный звук затрагивает нервные окончания, располагающиеся в начале улитки, а звуковые колебания низкой частоты – окончания в ее вершине. Механизм распознавания частоты звуковых колебаний достаточно сложен. В целом он заключается в анализе месторасположения затронутых колебаниями нервных окончаний, а также в анализе частоты импульсов, поступающих в мозг от нервных окончаний.
    Существует целая наука, изучающая психологические и физиологические особенности восприятия звука человеком. Эта наука называется психоакустикой. В последние несколько десятков лет психоакустика стала одной из наиболее важных отраслей в области звуковых технологий, поскольку в основном именно благодаря знаниям в области психоакустики современные звуковые технологии получили свое развитие. Давайте рассмотрим самые основные факты, установленные психоакустикой.
    Основную информацию о звуковых колебаниях мозг получает в области до 4 кГц. Этот факт оказывается вполне логичным, если учесть, что все основные жизненно необходимые человеку звуки находятся именно в этой спектральной полосе, до 4 кГц (голоса других людей и животных, шум воды, ветра и проч.). Частоты выше 4 кГц являются для человека лишь вспомогательными, что подтверждается многими опытами. В целом, принято считать, что низкие частоты «ответственны» за разборчивость, ясность аудио информации, а высокие частоты – за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до приблизительно 20 КГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов.
    В спектре звука большинства музыкальных инструментов наблюдается наиболее выделяющаяся по амплитуде частотная составляющая. Ее называют основной частотой или основным тоном. Основная частота является очень важным параметром звучания, и вот почему. Для периодических сигналов, слуховая система человека способна различать высоту звука.
    Вообще, в зависимости от амплитуд составляющих спектра, звук может приобретать различную окраску и восприниматься как тон или как шум. В случае если спектр дискретен (то есть, на графике спектра присутствуют явно выраженные пики), то звук воспринимается как тон, если имеет место один пик, или как созвучие, в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия. Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов (осцилляторов). Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки. Поученный прибор явит собой простейший синтезатор звука.
    Далее...

 
 

Звук и цифровые технологии

 

Пространственное звучание.

 

Человек слышит двумя ушами и за счет этого способен различать направление прихода звуковых сигналов. Эту способность слуховой системы человека называют бинауральным эффектом. Механизм распознавания направления прихода звуков сложен и, надо сказать, что в его изучении и способах применения еще не поставлена точка.

Уши человека расставлены на некотором расстоянии по ширине головы. Скорость распространения звуковой волны относительно невелика. Сигнал, приходящий от источника звука, находящегося напротив слушателя, приходит в оба уха одновременно, и мозг интерпретирует это как расположение источника сигнала либо позади, либо спереди, но не сбоку. Если же сигнал приходит от источника, смещенного относительно центра головы, то звук приходит в одно ухо быстрее, чем во второе, что позволяет мозгу соответствующим образом интерпретировать это как приход сигнала слева или справа и даже приблизительно определить угол прихода. Численно, разница во времени прихода сигнала в левое и правое ухо, составляющая от 0 до 1 мс, смещает мнимый источник звука в сторону того уха, которое воспринимает сигнал раньше. Такой способ определения направления прихода звука используется мозгом в полосе частот от 300 Гц до 1 кГц. Направление прихода звука для частот расположенных выше 1 кГц определяется мозгом человека путем анализа громкости звука. Дело в том, что звуковые волны с частотой выше 1 кГц быстро затухают в воздушном пространстве. Поэтому интенсивность звуковых волн, доходящих до левого и правого ушей слушателя, отличаются на столько, что позволяет мозгу определять направление прихода сигнала по разнице амплитуд. Если звук в одном ухе слышен лучше, чем в другом, следовательно источник звука находится со стороны того уха, в котором он слышен лучше. Немаловажным подспорьем в определении направления прихода звука является способность человека повернуть голову в сторону кажущегося источника звука, чтобы проверить верность определения. Способность мозга определять направление прихода звука по разнице во времени прихода сигнала в левое и правое ухо, а также путем анализа громкости сигнала используется в стереофонии.

Имея всего два источника звука можно создать у слушателя ощущение наличия мнимого источника звука между двумя физическими. Причем этот мнимый источник звука можно «расположить» в любой точке на линии, соединяющей два физических источника. Для этого нужно воспроизвести одну аудио запись (например, со звуком рояля) через оба физических источника, но сделать это с некоторой временной задержкой в одном из них и соответствующей разницей в громкости. Грамотно используя описанный эффект можно при помощи двухканальной аудио записи донести до слушателя почти такую картину звучания, какую он ощутил бы сам, если бы лично присутствовал, например, на каком-нибудь концерте. Такую двухканальную запись называют стереофонической. Одноканальная же запись называется монофонической.

На самом деле, для качественного донесения до слушателя реалистичного пространственного звучания обычной стереофонической записи оказывается не всегда достаточно. Основная причина этого кроется в том, что стерео сигнал, приходящий к слушателю от двух физических источников звука, определяет расположение мнимых источников лишь в той плоскости, в которой расположены реальные физические источники звука. Естественно, «окружить слушателя звуком» при этом не удается. По большому счету по той же причине заблуждением является и мысль о том, что объемное звучание обеспечивается квадрофонической (четырехканальной) системой (два источника перед слушателем и два позади него). В целом, путем выполнения многоканальной записи нам удается лишь донести до слушателя тот звук, каким он был «услышан» расставленной нами звукопринимающей аппаратурой (микрофонами), и не более того. Для воссоздания же более или менее реалистичного, действительно объемного звучания прибегают к применению принципиально других подходов, в основе которых лежат более сложные приемы, моделирующие особенности слуховой системы человека, а также физические особенности и эффекты передачи звуковых сигналов в пространстве.

Одним из таких инструментов является использование функций HRTF (Head Related Transfer Function). Посредством этого метода (по сути – библиотеки функций) звуковой сигнал можно преобразовать специальным образом и обеспечить достаточно реалистичное объемное звучание, рассчитанное на прослушивание даже в наушниках.

Суть HRTF – накопление библиотеки функций, описывающих психофизическую модель восприятия объемности звучания слуховой системой человека. Для создания библиотек HRTF используется искусственный манекен KEMAR (Knowles Electronics Manikin for Auditory Research) или специальное «цифровое ухо». В случае использования манекена суть проводимых измерений состоит в следующем. В уши манекена встраиваются микрофоны, с помощью которых осуществляется запись. Звук воспроизводится источниками, расположенными вокруг манекена. В результате, запись от каждого микрофона представляет собой звук, «прослушанный» соответствующим ухом манекена с учетом всех изменений, которые звук претерпел на пути к уху ( затухания и искажения как следствия огибания головы и отражения от разных ее частей). Расчет функций HRTF производится с учетом исходного звука и звука, «услышанного» манекеном. Собственно, сами опыты заключаются в воспроизведении разных тестовых и реальных звуковых сигналов, их записи с помощью манекена и дальнейшего анализа. Накопленная таким образом база функций позволяет затем обрабатывать любой звук так, что при его воспроизведении через наушники у слушателя создается впечатление, будто звук исходит не из наушников, а откуда-то из окружающего его пространства.

Таким образом, HRTF представляет собой набор трансформаций, которые претерпевает звуковой сигнал на пути от источника звука к слуховой системе человека. Рассчитанные однажды опытным путем, HRTF могут быть применены для обработки звуковых сигналов с целью имитации реальных изменений звука на его пути от источника к слушателю. Не смотря на удачность идеи, HRTF имеет, конечно, и свои отрицательные стороны, однако в целом идея использования HRTF является вполне удачной. Использование HRTF в том или ином виде лежит в основе множества современных технологий пространственного звучания, таких как технологии QSound 3 D ( Q3 D), EAX, Aureal3 D ( A3 D) и другие.

Цифровые аудио сигналы  

Компьютер – это цифровое устройство, то есть электронное устройство, в котором рабочим сигналом является дискретный сигнал. Сегодняшние компьютеры оперируют дискретными сигналами, несущими двоичные значения, условно обозначаемые как «да» и «нет» (на электрическом уровне: 0 вольт и V вольт, для некоторого ненулевого значения V). С помощью одного двоичного сигнала за один шаг можно передать информацию об одном из всего двух положений: 0 («да») или 1 («нет»). С помощью N двоичных сигналов за один шаг можно передать информацию об одном из 2 N положений (2 N – это число комбинаций нулей и единиц для N сигналов). Взаимодействие всех составляющих компьютер блоков происходит путем обмена и обработки одним или одновременно несколькими двоичными сигналами. Все – коды управления, а также сама обрабатываемая информация – все представляется в компьютере в виде чисел. По этой причине и аудио сигналы в цифровой аппаратуре представляют в виде чисел.

Итак, каким же образом можно описать аналоговый аудио сигнал в цифровой форме? Реальный аудио сигнал – это сложное по форме колебание, некая сложная зависимость амплитуды звуковой волны от времени. Преобразование аналогового звукового сигнала в цифровой вид называется аналогово-цифровым преобразованием или оцифровкой. Процесс такого преобразования заключается в:

 

·   осуществлении замеров величины амплитуды аналогового сигнала с некоторым временным шагом - дискретизация;

 

·   последующей записи полученных значений амплитуды в численном виде – квантование.

 

Дискретизация

 

Процесс дискретизации по времени - это процесс получения мгновенных значений преобразуемого аналогового сигнала с определенным временным шагом, называемым шагом дискретизации (см. рис. 7).

 

Количество осуществляемых в одну секунду замеров величины сигнала называют частотой дискретизации или частотой выборки, или частотой сэмплирования (от англ. « sampling» – «выборка»). Очевидно, что чем меньше шаг дискретизации, тем выше частота дискретизации (то есть, тем чаще регистрируются значения амплитуды), и, значит, тем более точное представление о сигнале мы получаем. Это рассуждение подтверждается доказанной теоремой, теоремой Котельникова (в зарубежной литературе встречается как теорема Шеннона, Shannon). Согласно этой теореме, аналоговый сигнал с ограниченным спектром может быть точно описан дискретной последовательностью значений его амплитуды, если эти значения следуют с частотой, как минимум вдвое превышающей наивысшую частоту спектра. Иначе говоря, аналоговый сигнал, в котором частота наивысшей составляющей спектра равна F m, может быть точно описан последовательностью дискретных значений амплитуды, если для частоты дискретизации F d выполняется: . На практике это означает следующее: для того, чтобы оцифрованный сигнал содержал информацию о всем диапазоне слышимых человеком частот исходного аналогового сигнала (0 – 20 кГц) необходимо, чтобы выбранное значение частоты дискретизации при оцифровке сигнала составляло не менее 40 кГц.

Казалось бы, для завершения процесса оцифровки теперь осталось лишь записать измеренные мгновенные значения амплитуды сигнала в численной форме. Полученная последовательность чисел (по одному результату замера амплитуды сигнала на каждый шаг) и образует цифровую форму исходного аналогового сигнала – так называемый импульсный сигнал . Здесь, однако, обнаруживается основная трудность оцифровки, заключающаяся в невозможности записать измеренные значения сигнала с идеальной точностью.

 

Линейное (однородное) квантование

 

Допустим, что для записи одного значения амплитуды сигнала в памяти компьютера мы отводим N бит. Соответственно, с помощью одного N -битного слова (слово – последовательность N бит) можно описать 2 N разных положений. Допустим теперь, что амплитуда оцифровываемого сигнала колеблется в пределах от -1 до 1 некоторых условных единиц. Заметим, что измеренным значениям амплитуды ничто не мешает быть дробными (например, -0.126 или 0.997). Представим этот диапазон изменения амплитуды - динамический диапазон сигнала - в виде 2 N -1 равных промежутков, разделив его на 2 N уровней - квантов (произведя таким образом однородное, линейное разбиение амплитудной шкалы). Теперь, для записи каждого отдельного значения амплитуды, его необходимо округлить до ближайшего уровня квантования. Этот процесс называется квантованием по амплитуде. Говоря более формальным языком, квантование по амплитуде – это процесс замены реальных (измеренных) значений амплитуды сигнала значениями, приближенными с некоторой точностью. Каждый из 2 N возможных уровней называется уровнем квантования,а расстояние между двумя ближайшими уровнями квантования называется шагом квантования. В случае линейного разбиения амплитудной шкалы на уровни, квантование называют линейным (однородным) . На рис. 8 представлен пример такого квантования.

Как видно, результатом такой оцифровки стал ступенчатый сигнал, составленный из прямоугольников, каждый из которых имеет ширину равную величине шага дискретизации, и высоту равную измеренному значению амплитуды сигнала.

Очевидно, что точность округления зависит от выбранного количества (2 N) уровней квантования, которое, в свою очередь, зависит от количества бит ( N), отведенных для записи значения амплитуды. Чем больше уровней квантования и чем ближе они друг к другу (а, для некоторого фиксированного диапазона изменения амплитуды расстояние между уровнями квантования обратно пропорционально их количеству), тем на меньшую величину приходится округлять измеренные значения амплитуды, и, таким образом, тем меньше получаемая погрешность квантования. Число N называют разрядностью квантования (подразумевая количество разрядов, то есть бит, в каждом слове), а полученные в результате округления значений амплитуды числа – отсчетами или сэмплами (от англ. “ sample” – “замер”).Считается, что погрешность квантования, являющаяся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными.

Описанный способ оцифровки сигнала - дискретизация сигнала во времени в совокупности с методом однородного квантования - называется импульсно-кодовой модуляцией, ИКМ (англ. Pulse Code ModulationPCM). Стандартный аудио компакт-диск ( CD- DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM, с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

 

 

Часть [1]  [2]  [3]  [4]  [5]  [6]


Статьи

Ламповый звук
Тайны лампового звука
Волшебство лампового звука [1] [2]
Когда лампа лучше, чем транзистор [1] [2]
Почему вакуумный триод звучит музыкально
Схемотехника ламповых усилителей
Лампы или транзисторы? Лампы!
Однотактный ламповый усилитель для начинающих
Двухтактные ламповые усилители
Оконечный пушпульный усилитель - схема Уильямсона-Хафлера-Кероеса
Рекомендации по повторению реплики схемы Уильямсона-Хафлера-Кероеса
Однотактный усилитель с непосредственной связью. Схема Loftin-White [1] [2]
Трехламповый усилитель Губина
Однотактник на 300В
Усилители низкой частоты
Расчет каскада с нагрузкой в аноде
Однотактный усилитель на лампе 807 [1] [2]
Циклотрон. Мощный усилитель с выходными лампами ГУ-50
SE на RB300
Однотактный усилитель мощности на 300В. Модель WE91 для 90-х годов [1] [2]
Как улучшить звучание HI-FI системы [1] [2] [3] [4] [5] [6]
Лампы и звук: назад, в будущее [1] [2] [3] [4] [5]
Однотактный ламповый ... [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Апгрейд усилителя XD845MKIII [1] [2]
"Усилитель" для наушников на SRPP [1] [2] [3] [4] [5] [6]
Ламповый High-End [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [...]
Обзор журнала Glass Audio за 1998 год [1] [2]
Обзор журнала Glass Audio за 1999 год
Корректор для винила
Компенсированные регуляторы громкости
Усилитель НЧ
Даешь ONGAKU!
Tubesaurus Rex
Усилитель НЧ с комбинированной обратной связью
Прибор для измерения напряжения накала высоковольтных кенотронов
George Ohm живет в Харькове
Ревизия однотактного усилителя с межкаскадным трансформатором
Усилитель мощности НЧ с высоким КПД
Двухканальный усилитель НЧ
Усилитель НЧ с клавишным переключателем
Радиотрансляционные установки ТУ-50 и ТУ-100
Портативный проигрыватель
Усилитель НЧ
Усилитель без выходного трансформатора
Усилители без выходного трансформатора
Лампово-полупроводниковый УМЗЧ
Акустика
Бытовые акустические системы [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Там, где живут басы [1] [2] [3] [4] [5] [6]
The Onken Enclosure
Категории слухового восприятия [1] [2]
Три взгляда на акустику помещений [1] [2]
Акустика в которой мы живем [1] [2]
Акустика офисов
Мифы звукоизоляции
Акустика отделочных материалов
Акустический агрегат с объемным звучанием
Акустические свойства домашней мебели
Акустические линзы для громкоговорителей
Акустические измерения в практике радиолюбителя
Акустический фазоинвертор
Акустика студий [1] [2]
Полезные советы разработчиков Hi-End
Триод против пентода. Что выбрать? [1] [2]
SINGLE-ENDED VS PUSH-PULL [1] [2] [3] [4] [5] [6] [7]
Одноламповые усилители низкой частоты
Как пользоваться характеристиками электронных ламп
Многоламповые усилители НЧ на импортных лампах
Контактно-резисторный коммутатор входов
Как проверять аппаратуру в салоне
Что лучше: 4 или 8 Ом акустика?
Выходной трансформатор для однотактника. Быть или не быть линейным
Простая и быстрая проверка трансформаторов
Десять способов усовершенствовать вашу аудиокомнату
Испытатель ламп
Понижение уровня фона в усилителях
Evolution
Пять правил рационального питания
Трансформаторы в однотактных усилителях
Выходные трансформаторы
Измерение характеристик выходного трансформатора [1] [2]
Однотактный «Magnum»
Какая лампа нам нужна
Какая лампа нам нужна и будет ли она?
Улучшенная конфигурация листов трансформаторной стали
Должен ли УМЗЧ иметь малое выходное сопротивление? [1] [2]
Звук: интересные наблюдения
Вся правда об акустике ProAc
Немного теории лампового звука
О заметности искажений
История лампы 300B
Краткая история возникновения Hi-Fi
Возможен ли "виниловый ренессанс?" [1] [2] [3]
Hi-End: Мифы и реальность [1] [2]
Как не заблудиться в кабельных джунглях?
Побалуйте свои уши! [1] [2]
Ограничение сигнала усилителем – можно ли работать в клиппинге?
"Хай-Энд" умер, да здравствует "Хай-Энд"! [1] [2]
Блестящие звукозаписи [1] [2] [3]
Семь слов об ошибках аудиоэкспертизы
Частотные, нелинейные и фазовые искажения
Внешние факторы, влияющие на восприятие звука
Многоканальный окружающий звук [1] [2] [3] [4]
Магнитная запись: мифы и реальность
Теория схемотехники и звукотехники
Для начинающих. Как работает усилитель [1] [2]
Принципы схемотехники электронных ламп [1] [2] [3] [4] [5] [6] [7] [8]
Хрестоматия радиолюбителя, 1963г. [1] [2] [3] [4] [5]
Конструктивный расчет входных и выходных трансформаторов [1] [2]
Как работают звуковые трансформаторы
Элементарная теория схем с обратной связью [1] [2] [3]
Теория звукотехники
Двухтактно-параллельный усилитель НЧ
Особенности стандартов, описывающих мощность в звукотехнике
Отрицательная обратная связь в усилителях
Классы усилителей мощности
Элементарная теория триода [1] [2] [3] [4] [5] [6] [7] [8] [9]
Как работает лучевой тетрод
О мощности, ваттах, децибелах... [1] [2]
Теория звука [1] [2] [3] [4]
Звук и цифровые технологии [1] [2] [3] [4] [5] [6]
Проектирование абсолютно устойчивых усилителей [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Звуковые форматы
Описание стандарта MP3
Правильная мощность
Начинающим. Радиолампа
Высококачественный усилитель низкой частоты
Объемный звук [1] [2] [3]
Парадоксы электрона
Вибратор к гитаре
Ламповый авометр
Старая и популярная 12АХ7/ЕСС83
Принцип устройства и работы электро-вакуумных приборов
Двухэлектродные лампы
Трехэлектродные лампы
Рабочий режим триода
Многоэлектродные и специальные лампы
Электронно-лучевые трубки
Газоразрядные и индикаторные приборы
Фотоэлектронные приборы
Собственные шумы электронных ламп
Особенности работы электронных ламп на СВЧ
Специальные электронные приборы для СВЧ
Надежность и испытание электровакуумных приборов
Основы схемотехники ламповых усилителей
Искажения в усилителях, их измерение, меры по снижению искажений
Основные сведения о радиокомпонентах
Источники питания
Каскады усиления мощности
Каскады предварительного усиления
Широкополосные усилители
Усилительный каскад с катодной нагрузкой [1] [2]
Life in Vacuum. EL34
Life in Vacuum. 6H8C, 6H9C
Life in Vacuum. SV572 SV6550 6C5C 6C3П/6C4П
Двойной триод 6Н3П
Пентод 6Ж5П
6П42С / 6П45С
Лучевой тетрод 6П1П
Пентод 6П14П в оконечном каскаде
Двойной триод 6Н14П
Кенотрон 1Ц11П
Демпферный диод 6Ц10П
Что и как мы слышим
 
 
 

Найти на сайте

 

Информация

Уничтожение клопов

Компания Дилижанс предлагает Вам услугу: аренда автомобиля с водителем на выгодных условиях.

http://w4b.ru - Информационно-справочный бизнес ресурс

 

Это интересно

Сложности, связанные с оцифровкой
    Не смотря на кажущуюся простоту и интуитивность процесса оцифровки, эта процедура сопряжена со многими трудностями и проблемами.
    Во-первых, частота дискретизации, устанавливаемая теоремой Котельникова, является минимально необходимой, но не достаточной. Дискретизация вносит дополнительные помехи в спектр исходного сигнала, добавляя в него его же зеркальную копию. Поэтому значение частоты дискретизации должно выбираться несколько большим, чем частота, устанавливаемая теоремой Котельникова, чтобы сделать возможной успешную фильтрацию лишних спектральных составляющих.
    Во-вторых, квантование значений сигнала привносит в спектр сигнала дополнительную помеху, называемую шумом квантования или шумом дробления . Шумом (ошибкой) квантования называют сигнал, составляющий разницу между восстановленным цифровым и исходным аудио сигналами. Эта разница образуется в результате округления измеренных значений сигнала. При этом выполняется следующая закономерность: чем выше разрядность квантования, тем ниже уровень шума квантования (поскольку тем на меньшее значение требуется округлять каждое измеренное значение сигнала). Природа шума квантования такова, что ширина спектральной области, в которой он простирается, пропорциональна значению частоты дискретизации. При этом при фиксированной разрядности квантования, общая энергия шума квантования остается постоянной. А это значит, что чем выше частота дискретизации, тем в более широкой спектральной области простирается шум квантования и, соответственно, тем ниже его мощность в некоторой фиксированной интересующей нас полосе спектра, например, в полосе слышимых частот. Этот факт имеет большое практическое значение.
    Надо сказать, что уровень шума квантования также зависит и от формы самого сигнала. В идеальном случае, ошибка при округлении значений сигнала является случайной и, значит, спектр шума квантования оказывается равномерным. В реальности, однако, этого не происходит. Форма реальных звуковых сигналов является в определенной степени не случайной, а, значит, и ошибка квантования тоже является не случайной. В этом случае спектр шума квантования оказывается не равномерным и концентрируется в какой-то определенной области, что отрицательно сказывается на звучании цифрового сигнала. Существует несколько способов борьбы с этим явлением. Так, нежелательную концентрацию шума квантования в некоторой частотной области можно нейтрализовать путем подмешивания к исходному аналоговому сигналу некоторого слабого по мощности псевдослучайного шума. Этот шум минимизирует степень зависимости ошибок округления от формы преобразуемого сигнала, что хорошо рассеивает спектр шума квантования и делает его равномерным. Таким образом, описанный прием (называемый дизерингом, от англ. « dithering» – «дрожание») как бы подменяет нежелательный шум квантования искусственно подмешанным псевдослучайным шумом. При этом подмешанный псевдослучайный шум оказывается менее заметным на слух, чем тот шум квантования, какой получился бы без применения дизеринга. Еще один прием борьбы с уровнем шума квантования называется формовкой шума (от англ. “ noise shaping”). Идея приема заключается в преднамеренном изменении формы исходного аналогового сигнала специальным образом, чтобы последующее квантование привело к появлению шума квантования, основная энергия которого расположилась бы в наименее заметных на слух частотных областях. Формирование шума с таким спектром достигают путем использования фильтра, моделирующего кривую равной громкости (об этой кривой мы говорили выше).
    Рассмотрим, наконец, еще один неприятный эффект оцифровки, называемый гранулярным шумом. Гранулярным шумом(от англ. « granular noise») называют эффект нестабильности округления в процессе квантования. Если величина сигнала незначительно меняется около некоторой величины, являющейся границей между двумя соседними уровнями квантования, даже самые маленькие колебания величины сигнала вокруг этой границы могут вызывать заметные изменения результатов округления при квантовании значений амплитуды. Это связано с тем, что квантователь в этом случае округляет измеренное значение сигнала то до величины одного, то до величины второго из соседствующих уровней квантования.
    Далее...

 

Усилитель ламповый XD850MKIII

XD850MKIII

Акустическая система Music Angel One

Music Angel One

Усилитель ламповый XD800MKIII

XD800MKIIIIII

Усилитель ламповый MINIP1

MINIP1